
Brief Announcement: ParlayLib – A Toolkit for Parallel

Algorithms on Shared-Memory Multicore Machines

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Daniel Anderson
Carnegie Mellon University

dlanders@cs.cmu.edu

Laxman Dhulipala
Carnegie Mellon University

ldhulipa@cs.cmu.edu

Abstract

ParlayLib is a C++ library for developing efficient parallel algo-
rithms and software on shared-memory multicore machines. It
provides additional tools and primitives that go beyond what is
available in the C++ standard library, and simplifies the task of
programming provably efficient and scalable parallel algorithms. It
consists of a sequence data type (analogous to std::vector), many
parallel routines and algorithms, a work-stealing scheduler to sup-
port nested parallelism, and a scalable memory allocator. It has been
developed over a period of seven years and used in a variety of soft-
ware including the PBBS benchmark suite, the Ligra, Julienne, and
Aspen graph processing frameworks, the Graph Based Benchmark
Suite, and the PAM library for parallel balanced binary search trees,
and an implementation of the TPC-H benchmark suite.

ACM Reference Format:

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief An-
nouncement: ParlayLib – A Toolkit for Parallel Algorithms on Shared-
Memory Multicore Machines. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3350755.3400254

1 Introduction

Writing correct and efficient parallel algorithms is a challenging
task, even for parallel programming experts. We have designed Par-
layLib over a number of years to simplify programming parallel
algorithms by supplying a variety of parallel primitives and func-
tionality that has greatly helped us develop correct and fast code.
In this short paper, we describe the library and compare it with ex-
isting C++ libraries in terms of both functionality and performance.
ParlayLib is designed to make extensive use of modern features of
C++ including lambdas and C++ threads. The library is used across
a range of projects in our own and affiliated research groups, and
is currently being used as part of ongoing work on shared-memory
parallel graph algorithms in an industrial research lab. The library
is portable, running to a few thousand lines of header files. The
library can be found at https://github.com/cmuparlay/parlaylib.
Parallel Tools for C++. Over the years, many parallel libraries
and extensions have been developed for C++. The Cilk environ-
ment supplies constructs for nested fork-join parallelism and an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400254

efficient scheduler [2]. The OpenMP API also supplies similar con-
structs as Cilk. It performs exceptionally well at processing regular
loops, but has been observed to struggle with irregular loops and
nested parallelism. Intel’s Threading Building Blocks (TBB) is a
library supplying a variety of functionality including a scheduler, a
pool-based memory allocator, and a set of concurrent data struc-
tures. Recently, the C++ community has proposed a standardized
set of parallel extensions to the C++ Standard Library [8]. These
extensions make it easier for developers already using the Stan-
dard Library to transition to and integrate parallelism. Intel has
developed an implementation of the proposal, called ParallelSTL,
which builds on top of TBB. These tools all have desirable prop-
erties and support a very similar interface. They all support task
parallelism via some form of forking, joining, and parallel loops,
scheduled on worker threads with bounded id numbers. However,
their support for a wide range of useful parallel operations outside
of these fundamental primitives is lacking.
ParlayLib. ParlayLib provides additional primitives, algorithms,
and data structures that go beyond what is offered by existing
parallel programming tools, with an emphasis on performance,
provable-efficiency, and scalability. The library supports parallel
algorithms ranging from simple primitives such as map, filter, prefix
sum (scan), and reduce, to sophisticated and work-efficient imple-
mentations of histograms, generating random permutations, integer
sorting, suffix arrays, and many others. It also implements a broad
subset of the algorithms in the C++ Extensions for Parallelism
proposal [8]. The algorithms in ParlayLib are written in terms of
scheduler-agnostic parallel primitives, and so the primitives pro-
vided by ParlayLib can be used in conjunction with Cilk, OpenMP,
TBB (using their primitives for parallelism), or its own custom
work-stealing scheduler written using standard C++ threads, with
no additional dependencies.

At the level above the scheduler, the library has two basic con-
structs for parallelism: parallel_for(start, end, f) applies the
function f (typically a lambda) to the integers from start (inclu-
sive) to end (exclusive) in parallel, and parallel_do(f1, f2) runs the
functions f1 and f2 in parallel. If run on Cilk, OpenMP, or TBB these
primitives convert directly to their equivalents in these systems.

The parallel algorithms implemented in ParlayLib build on these
basic parallel idioms, using a purely-functional methodology when-
ever possible. For example, most of our sequence algorithms do
not mutate the input array, and return a new result. In our experi-
ence, this style prevents a large class of bugs, and leaves in-place
optimizations as a special case to be used at the discretion of the
programmer, and not as a default option.
Contributions. This paper introduces ParlayLib, a highly scalable
toolkit of parallel primitives and datatypes. Specifically, it provides
the following features:

https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1145/3350755.3400254
https://github.com/cmuparlay/parlaylib
https://doi.org/10.1145/3350755.3400254

ad
ja

ce
nt

find
al

l of

an
y

of

co
unt

co
unt

if

eq
ual

ex
clu

siv
e

sc
an find

find
en

d

find
firs

t
of

find
if

find
if

not

fo
r

ea
ch

is
par

tit
io

ned

is
so

rt
ed

is
so

rt
ed

until

lex
co

m
par

e

m
ax

ele
m

en
t

m
er

ge

m
in

ele
m

en
t

m
in

m
ax

ele
m

en
t

m
ism

at
ch

nth
ele

m
en

t

non
e

of

re
duce

re
m

ov
e

if

re
ve

rs
e

ro
ta

te

se
ar

ch so
rt

st
ab

le
so

rt

tr
an

sfm
ex

cl
sc

an

tr
an

sfm
re

duce

uniq
ue

wor
dco

unt

pr
im

e
sie

ve
m

cs
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

a
ti

ve
P

er
fo

rm
a

n
ce

ParlayLib

ParallelSTL

Figure 1: Relative performance of ParlayLib vs. ParallelSTL on a 72-core machine with 2-way hyper-threading enabled. All

benchmarks are run on sequences of length 108 containing 8-byte elements.

(1) Parallel collection datatypes, including sequences, delayed (or
lazy) sequences, parallel hash tables, and parallel bags.

(2) Header-only implementations of a work-stealing scheduler and
a scalable memory allocator.

(3) A collection of provably-efficient parallel primitives for se-
quences with low work and depth.

(4) Implementations of most of the algorithms in the C++ Exten-
sions for Parallelism proposal that achieve a 1.43x speedup on
average over Intel’s publicly available implementation of the
proposal across a broad set of the implemented primitives.

2 ParlayLib Overview

Next, we give an overview of ParlayLib. We defer a full description
of our library to our repository, where we describe the interfaces
and cost bounds for our primitives and datatypes.
Sequences. One of the main datatypes of ParlayLib is a generic
sequence data type. It can be thought of as a parallel version of
C++’s vector, but has many features designed to make it better
suited for parallelism. Importantly, unlike vectors, it allows parallel
initialization, destruction, copying, and resizing. Sequences can also
be used as a replacement for strings, with the added benefit that
they support efficiently manipulating the underlying sequence of
characters in parallel. In addition, ParlayLib implements the “small
string optimization”, which is important for high performance on a
large amount of real-world code that processes strings.
Delayed Sequences. We provide a lazy sequence datatype that
we refer to as a delayed sequence. A delayed sequence avoids stor-
ing the elements of the sequence in memory in cases where the
sequence can be succinctly represented by a function of the index.
There are numerous advantages of employing delayed sequences,
since they permit us to fuse parallel operations such as maps and
reductions without storing intermediate results in memory. The
sequence primitives in ParlayLib automatically work on both se-
quences and delayed sequences. This is an attractive feature of
ParlayLib, since we can avoid the hassle of creating a _transform
version of each primitive that takes an extra map argument, which
significantly clutters the C++ Standard Library interfaces.
Other Parallel Datatypes. In addition to the sequence datatypes
above, we provide an implementation of a phase-concurrent parallel

hash table due to Shun and Blelloch [10], as well as specializations
of the table to unordered sets. We note that the PAM library for
trees [12], and the GBBS benchmark [5] for graphs which builds on
the Ligra framework [9], and the Aspen framework for streaming
graph processing [6] have been built as libraries on top of Par-
layLib. Users desiring either tree or graph datatypes can easily
integrate both ParlayLib and the desired package into their work.
Sequence Primitives. We provide fundamental primitives that
work on sequences, or any type with random access iterators
(including vectors, or arrays). This includes equivalents to most
C++ Standard Library routines. In addition to implementations of
these standard primitives, we provide generic implementations of
many parallel sequence primitives not supported by the standard li-
brary, including pack_index, random_shuffle, histogram, inte-
ger_sort, counting_sort, remove_duplicates, collect_reduce,
and semisort [7], amongst others.

All sequence primitives apply to both regular and delayed se-
quences. Furthermore, our primitives all have strong provable
bounds on their work and depth, assuming the algorithms are sched-
uled on an efficient scheduler [1, 3]. Having cost bounds for our
primitives enables higher-level libraries to derive strong provable
bounds on the work and depth of their algorithms by composing
the costs of the primitives in ParlayLib.

As an example, we show the actual C++ code for a prime sieve
implementation using ParlayLib in Algorithm 1. The algorithm
uses a number of primitives from ParlayLib. It initializes a boolean
sequence, flags, in parallel on Line 8. The algorithm uses a par-
allel_for on Lines 11–18 to loop over the primes found in the
recursive call in parallel, and for each prime, spawns a nested par-
allel_for (Lines 14–17) to mark all multiples of this prime as false
in the flags array. The last argument to the parallel_for com-
mand used on Lines 17 and 18 is an optional granularity parameter
specifying the minimum number of loop iterations that must be
contained within a parallel task that is spawned. Note that the inner
loop uses a higher granularity since the work it performs is regular,
and the outer loop uses a small granularity since each outer loop
iteration contains a variable amount of work. Our code is simple
and as we discuss later, performs significantly better than the same

algorithm implemented in ParallelSTL, likely due to challenges
with handling nested parallelism in the TBB scheduler.

2.1 Benchmarks

Comparison vs. Parallel STL.We compared our implementation
of several algorithms in the C++ Extensions for Parallelism pro-
posal [8] to Intel’s implementation (ParallelSTL). We ran our
experiments on a 72-core machine with 2-way hyper-threading
enabled, and show the results of the comparison in Figure 1. We ob-
served that our code achieves an average speedup of 1.43x over Par-
allelSTL across the standard library benchmarks. We observe that
although both systems achieve similar performance onmany bench-
marks, ParlayLib consistently produces the fastest algorithms for
important primitives such as sorting, scans, and reductions. We
note that the superior performance of our find algorithms (e.g. adja-
cent_find, find_first_of) is attributable to the fact that they perform
work proportional to the position of the target element, whereas
ParallelSTL’s implementation always performs linear work.
Additional Benchmarks.We also benchmarked four applications:
word count (WC), maximum contiguous subsequence sum (MCSS),
a prime sieve up ton (Primes), and numerical integration (Integrate).
As far as possible, these applications use equivalent primitives in
both ParlayLib (see Algorithm 2) and ParallelSTL. Our algorithm
creates a delayed sequence on Line 4–6 by providing (i) the size
of the sequence and (ii) a lambda indicating the value stored at
the i’th index. For Integrate, ParallelSTL does not provide de-
layed sequences and thus cannot implement the memory-efficient
algorithm using delayed sequences. Instead, it must either create a
sequence of samples, or a sequence of indices and use the trans-
form_reduce primitive (we report results for the latter, since for
108 samples we found that it is almost twice as fast as the former).

We show the results for WC, MCSS, and Primes in Figure 1.
For these benchmarks, ParlayLib is 2.65x faster on average com-
pared to ParallelSTL, which could be due to better support for
nested parallelism in our scheduler for Primes, and using delayed
sequences in WC. Finally, for Integrate, ParlayLib is 28x faster
than ParallelSTL due to the fact that ParallelSTL must allocate
and initialize an array before performing the reduction, whereas
ParlayLib can simply perform a reduction over a delayed sequence.

3 Conclusion

We have described the ParlayLib toolkit for parallel programming,
which supplies fundamental parallel data structures, algorithms,
primitives, and other utilities that are useful when implement-
ing scalable and provably-efficient parallel algorithms on shared-
memory multicore machines. The library is already widely used
within other parallel algorithms research, including the Ligra [9]
and Julienne [4] graph processing frameworks, the Graph Based
Benchmark Suite (GBBS) [5], the Parallel Augmented Maps (PAM)
library [12], an implementation of the TPC-H benchmark [11] and
the graph-streaming system Aspen [6]. We invite contributions of
new primitives and algorithms to the library.

Acknowledgements

Thanks to Daniel Ferizovic, Julian Shun, and Yihan Sun for their
help with the library. This research was supported by NSF grants
CCF-1901381, CCF-1910030, and CCF-1919223.

Algorithm 1 Computing Primes in ParlayLib

1 template <typename Int >

2 parlay ::sequence <Int > prime_sieve(Int n) {

3 if (n < 2) return parlay ::sequence <Int >();
4 Int sqrt = std::sqrt(n);

5 // recursive call

6 auto primes_sqrt = prime_sieve(sqrt);

7 // flags to mark primes

8 parlay ::sequence <bool > flags(n+1, true);
9 // 0 and 1 are not prime

10 flags [0] = flags [1] = false;
11 parlay :: parallel_for (0, primes_sqrt.size(),

12 [&] (size_t i) {

13 Int prime = primes_sqrt[i];

14 parlay :: parallel_for (2, n/prime + 1,

15 [&] (size_t j) {

16 flags[prime * j] = false;
17 }, 1000);

18 }, 1);

19 // returns indices of the primes

20 return parlay ::pack_index <Int >(flags);
21 }

Algorithm 2 Numerical Integration ParlayLib

1 template <typename F>

2 double integrate(size_t n, double a, double b, F f) {

3 double delta = (b-a)/n;

4 auto samples = parlay :: delayed_seq <double >(n,
5 [&] (size_t i) {

6 return f(a + delta/2 + i * delta); });

7 return delta * parlay :: reduce(samples);
8 }

References

[1] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread scheduling
for multiprogrammed multiprocessors. Theory of Computing Systems (TOCS) 34,
2 (2001), 115–144.

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multithreaded
Runtime System. In ACM Symposium on Principles and Practice of Parallel Pro-
gramming (PPOPP).

[3] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded
computations by work stealing. J. ACM 46, 5 (1999), 720–748.

[4] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Frame-
work for Parallel Graph Algorithms Using Work-efficient Bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[5] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[6] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI).

[7] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[8] Switzerland International Organization for Standardization, Geneva. 2018.
ISO/IEC TS 19570:2018: Programming Languages – Technical Specification for
C++ Extensions for Parallelism. https://www.iso.org/standard/70588.html.

[9] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP).

[10] Julian Shun and Guy E Blelloch. 2014. Phase-concurrent hash tables for de-
terminism. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[11] Yihan Sun, Guy E Blelloch, Wan Shen Lim, and Andrew Pavlo. 2019. On sup-
porting efficient snapshot isolation for hybrid workloads with multi-versioned
indexes. PVLDB 13, 2 (2019), 211–225.

[12] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel Augmented
Maps. In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP).

https://www.iso.org/standard/70588.html

	Abstract
	1 Introduction
	2 ParlayLib Overview
	2.1 Benchmarks

	3 Conclusion
	References

