
Concurrent Deferred Reference Counting with
Constant-Time Overhead

Daniel Anderson∗

Carnegie Mellon University
Pittsburgh, PA, USA
dlanders@cs.cmu.edu

Guy E. Blelloch∗

Carnegie Mellon University
Pittsburgh, PA, USA
guyb@cs.cmu.edu

Yuanhao Wei∗

Carnegie Mellon University
Pittsburgh, PA, USA

yuanhao1@cs.cmu.edu

Abstract

We present a safe automatic memory reclamation approach
for concurrent programs, and show that it is both theoreti-
cally and practically efficient. Our approach combines ideas
from referencing counting and hazard pointers in a novel
way to implement concurrent reference counting with wait-
free, constant-time overhead. It overcomes the limitations of
previous approaches by significantly reducing modifications
to, and hence contention on, the reference counts. Further-
more, it is safer and easier to use than manual approaches.
Our technique involves using a novel generalization of haz-
ard pointers to defer reference-count decrements until no
other process can be incrementing them, and to defer or elide
reference-count increments for short-lived references.

We have implemented the approach as a C++ library and
compared it experimentally to several methods including
existing atomic reference-counting libraries and state-of-the-
art manual techniques. Our results indicate that our tech-
nique is faster than existing reference-counting implemen-
tations, and competitive with manual memory reclamation
techniques. More importantly, it is significantly safer than
manual techniques since objects are reclaimed automatically.

CCS Concepts: ·Computingmethodologies→Concur-

rent algorithms.

Keywords: automatic memory reclamation, concurrent al-
gorithms, wait-free

ACM Reference Format:

Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concur-

rent Deferred Reference Counting with Constant-Time Overhead.

In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3453483.3454060

∗Authors are listed in alphabetical order.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454060

1 Introduction

Memory reclamation, the problem of freeing allocated mem-
ory in a safe manner, is essential in any program that uses
dynamic memory allocation. A block of memory is safe to
reclaim only when it can not be subsequently accessed by
any thread of the program. Determining exactly when this
is the case is, however, a difficult problem, and even more so
for mutlithreaded programs which could be sharing, copy-
ing, or modifying references to the same memory blocks
concurrently. One solution is to rely on a fully garbage
collected language [32], though it is not always possible,
most-efficient, or most-flexible to use such languages. In
non-garbage-collected languages, concurrent memory recla-
mation, often called safe memory reclamation (SMR), is a
non-trivial and extensively studied problem with a long list
of proposed solutions. A crucial difficulty in the concurrent
setting is the possibility for read-reclaim races [27]. Such
a race is between a process that reads and dereferences a
pointer to an object and another that reclaims and reuses
the corresponding memory, while it is being read.

Concurrentmemory reclamation techniques can be broadly
divided into two categories, manual and automatic. With
manual techniques, the user is responsible for freeing ob-
jects. To protect against read-reclaim races, this is often
performed with a retire operation, which defers the reclama-
tion until it is safe, i.e., until no other thread is reading that
object. Such techniques include read-copy-update (RCU) [25],
epochs [22], hazard pointers [40], pass-the-buck [28], interval-
based reclamation [50], hazard eras [47], and others [11].

Automatic techniques are similar to what can be found in
garbage collectors, but without the ability to scan processor
private root sets (registers, stacks, etc.). A common tech-
nique is reference counting [16, 28, 35, 41, 46, 48, 49], which
consists in attaching a counter to each managed object that
counts the number of pointers to it, and performing reclama-
tion when the counter hits zero. Both manual and automatic
techniques can be implemented as library interfaces, and
both need to take care of read-reclaim races. Both can also
have some advantages over fully collected languages, such
as having more control over memory layout, guaranteeing
lock-freedom, or other desirable properties.

In the context of concurrent data structures, manual tech-
niques are often difficult to use and can lead to subtle and
hard to reproduce bugs. As evidence, we note that the use

526

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454060
https://doi.org/10.1145/3453483.3454060

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

of manual memory reclamation in several recent papers is
incorrect (see Section 8). These errors can lead to memory
leaks or even memory faults. Since these data structures
and their use of memory reclamation were implemented
and adopted by experts in the field, it would be difficult for
common users to get them right.

Reference counting, on the other hand, requires very few
modifications for programmers to integrate into their code,
and provides memory safety and leak freedom automatically
as long as the programmer either does not create reference
cycles or breaks such cycles before they become unreachable.
Owing to their ease of use, there has been an increase in
interest in atomic reference-counted pointers, as evidenced
by their inclusion in the most recent C++ standard (C++20).
There also exists optimized open-source [21] and even com-
mercial implementations [52]. However, for many concur-
rent data structures, reference counting can be expensive in
practice due to the need to frequently increment and decre-
ment shared counters [27].

A crucial challengewhen designing a concurrent reference-
counting scheme is dealing with read-reclaim races when the
reference count hits zero. In particular, if one thread decre-
ments the counter to zero, initiating reclamation, at the same
time that another thread increments the counter, the object
will appear to be live with a non-zero reference count, even
though it is no longer safe to access. Various techniques have
been developed to overcome this, including using tools from
manual SMR to delay reclamation until there can no longer
be any active reads [28, 48], and the split reference count
technique [51, Chapter 7.2.4], which involves maintaining
one internal reference count on the managed object itself
and possibly several external reference counts, one on each
pointer to the object.
In this paper, we propose an efficient approach to auto-

matic memory reclamation based on a novel combination of
reference counting and manual SMR. We make several ad-
vances to make library-based concurrent reference counting
both theoretically efficient and more practical. Theoretically,
we show the first solution with constant expected∗ time over-
head using only single word compare-and-swap (CAS) and
only delaying 𝑂 (𝑃2) decrements. Previous approaches are
either only lock-free [14, 16, 28, 41, 49, 51], wait-free with
𝑂 (𝑃) time [48] per operation, or use double-word fetch-and-
add [35, 46], which is not available on modern machines.
Our approach is based on a new algorithm that gener-

alizes hazard pointers to allow for multiple retires on the
same object. Standard hazard pointers would not be efficient
with multiple retires, requiring potentially much more space.
This technique allows us to implement deferred decrements

that protect an object’s reference count, delaying decre-
ments (and hence reclamation) while an increment is in
progress. This contrasts with previous reference counting

∗The łexpected timež bounds we give are purely due to hashing.

techniques [24, 28] that use hazard pointers to delay memory
reclamation after a reference count hits zero. This is a subtle
difference, but it has ramifications both in theory and prac-
tice. This generalization of hazard pointers, which we refer
to as acquire-retire, could be of interest beyond reference
counting. We further extend the approach by borrowing the
idea of deferred increments from reference-counted garbage
collectors [4, 5, 7, 17, 36]. When a reference to an object is
short lived, it almost certainly doesn’t need to modify the
reference count. We can facilitate this using acquire-retire
to protect the reference count during the reference’s short
lifetime. In the common case, this avoids both the increment
and the decrement.

We have implemented our technique as a library for C++2

and show that it is more efficient than existing optimized
libraries for atomic reference-counted pointers [14, 21, 52].
Our experiments show that deferred decrements alone lead
to improved performance over classic approaches, and that
deferred increments can result in a substantial speedupśover
an order of magnitude on highly contended workloads.
Lastly, we show that our scheme performs well against

state-of-the-art manual SMR techniques from a recent bench-
mark suite [45, 50]. When applied to a range of concur-
rent data structures for which reference counting previously
achieved no scaling whatsoever, our technique keeps up and
scales alongside the fastest manual SMR techniques. Further-
more, it manages to achieve throughput rates within a factor
of 1.2-2.5x of the fastest manual SMR techniques that use
an unbounded amount of memory while consuming only a
modest amount itself. Its memory consumption and perfor-
mance is competitive with hazard pointers but, unlike hazard
pointers, it is not constrained to a limited class of data struc-
tures. Last but not least, our scheme is automatic and hence
easier and safer to use than manual ones. To summarize, the
contributions of this paper are:

• A generalization of hazard pointers that supports constant-
time acquire and allows multiple concurrent retires of the
same handle, which we call acquire-retire,

• the design of a theoretically efficient scheme for automatic
memory reclamation based on combining acquire-retire
and reference counting,

• a practical implementation of the technique as a library
for C++, evaluated on a comprehensive set of benchmarks
which show that it outperforms existing reference-counting
techniques, and is also competitive with manual SMR.

Model and Assumptions. We assume the standard con-
current shared memory model with 𝑃 asynchronous pro-
cesses and sequential consistency [30]. Appropriate fences
are needed for weaker memory models, and are included
in our C++ implementations. We use the standard defini-
tions of wait-free, lock-free and linearizability [30]. Roughly
speaking, lock-freedom guarantees that some process makes

2Available at https://github.com/cmuparlay/concurrent_deferred_rc

527

https://github.com/cmuparlay/concurrent_deferred_rc

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

progress whereas wait-freedom guarantees that every pro-
cess makes progress. Intuitively, linearizability means that
each operation appears to take effect atomically at some
point during its execution interval. Throughout, when we
talk about the time of an operation, we mean the number of
instructions (both local and shared) performed by that oper-
ation before it completes. By pointer-width, we mean a word
that is just big enough for a pointerÐi.e., not even an extra
bit hidden somewhere. By space we mean number of words
including both shared and local memory. Beyond reads and
writes, we consider three other atomic read-modify-write
primitives: compare-and-swap (CAS), fetch-and-store, and
fetch-and-add. All three are supported by modern processors.

2 Related Work

Manual Memory Reclamation. Hazard pointers [40] is a
widely used technique for protecting against read-reclaim
races when using manual memory reclamation. The idea is
to protect reads on a memory location by storing a pointer
to it as a łhazard pointerž in a shared data structure. When
a process wishes to free memory, the reclamation of that
memory is deferred if it is currently protected by a hazard
pointer. Checking if it is protected requires scanning the
hazard pointers of all processes, but the cost can be amortized
by only scanning every once in a while, buffering pointers
that are ready to be freed until the next scan, and reclaiming
the memory after the scan has determined which pointers
are not protected by a hazard pointer. Protected pointers are
checked again on the next scan.

In the terminology we will use, which is reasonably stan-
dard, protecting a resource by adding a pointer to the set of
hazard pointers is an acquire, removing it is a release, mark-
ing a resource as ready to reclaim is a retire, and obtaining a
pointer to a retired resource that is safe to reclaim (i.e. is not
currently acquired) is an eject. Eject is often combined with
retire [28, 40] such that a retire will eject and reclaim point-
ers that were retired earlier and are now safe. Since hazard
pointers are meant to protect memory that is being freed, the
interface and implementation of hazard pointers require that
a memory block is retired at most once. A similar interface
is used in pass-the-buck [28]. Acquiring a protected pointer
using hazard pointers is lock-free but not wait-free since it
might need to retry if the source pointer has been modified
to point to a different memory location. The C++ community
has proposed an interface for hazard pointers [42] that is
implemented in Facebook’s Folly library [21].
Read Copy Update (RCU) [25] and epoch-based reclama-

tion [22] also serve a similar purpose and have a somewhat
similar interface. Instead of acquiring and releasing individ-
ual resources, however, they read_lock and read_unlock re-
gions that are not paired with any particular resource. They
guarantee that everything that is retired, by any process,
during the protected (locked) region will be ejected after the

region is finished. In some cases, this can make protection
easier. On the other hand, it means a retired resource cannot
be reclaimed until all protected regions that overlap the re-
tire finish. Most of the regions could have nothing to do with
the particular retire. This implies that the memory required
by RCU and epochs can be unbounded. The linux implemen-
tation of RCU mitigates this problem by disabling interrupts
during a locked region and asking the user to ensure that
they hold the read lock very briefly.

There has also been a lot of work on combining different
forms of memory reclamation. For example, many works
have developed methods that combine HP and EBR [33, 47,
50]. Some of these are even wait-free [45], but the memory
bound is very large: 𝑂 (𝑃𝑀) where 𝑀 is the most memory
that was live (allocated but not retired) at any time. Just like
HP, these methods also require the programmer to make
nontrivial modifications to their data structures. To avoid
these modifications, beware and cleanup [24] uses a limited
form of reference counting combined with hazard pointers,
though their technique still requires manually calling retire.
There has been work on accelerating memory reclama-

tion assuming specialized OS or hardware support. Such
approaches including using signaling [2, 3, 11], memory bar-
riers [6, 18], and hardware transactional memory [1, 19]. An
interesting hybrid of manual and automatic reclamation in-
volves using compiler support to automatically inject manual
memory reclamation code into a data structure [12].
Some memory reclamation techniques have been devel-

oped for specific data structures, or data structures assumed
to be in a specific form. These include optimistic access [13],
which operates on so-called normalized data structures, and
drop the anchor [10], which works on a list data structure.

Atomic Reference Counting. Perhaps the most widely
used interface in non-garbage-collected languages for au-
tomatic reclamation is reference-counted pointers, as pro-
vided by the standard libraries of many languages, e.g., C++
and Rust. Atomically maintaining reference counts is a well
studied problem. Valois, Michael and Scott [41, 49] first de-
veloped a lock-free approach, however, it can increment the
counter of freed memory and requires a CAS to update the
counter, which could fail and need to be repeatedly retried.
Detlefs et al. [16] describe a lock-free method that avoids
these two issues, but it requires a DCAS (a CAS on two
independent words), which is not supported by current ma-
chine architectures. Herlihy et al. [28] are able to remove the
DCAS assumption by using their pass-the-buck interface,
leaving us with a lock-free solution to the problem with just
single-word CAS. It still requires a CAS loop instead of a
fetch-and-add due to the use of a sticky counter. All of these
solutions are lock-free but not wait-free or constant time.
In particular, a thread trying to read a pointer could retry
indefinitely as other threads update or copy the pointer.

528

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

Sundell developed a wait-free solution [48]. However, like
the Valois-Michael-Scott method, it can increment freed
memory, making it inappropriate in many practical situ-
ations. Also, and perhaps more critically, the approach re-
quires 𝑂 (𝑃) time to retire each location, which is expensive.
In the practical world, the C++ standard recently added

support for atomic shared pointers [38], which provide a
thread-safe way for multiprocessor environments to share
reference-counted pointers. Prior implementations of atomic
operations on shared pointers use a small global hashtable of
locks, and hence are not scalable in practice. We know of two
external libraries that support lock-free solutions [21, 52].
Both are based on the split reference count technique [51,
Chapter 7.2.4] and are lock-free, but not wait-free.

A similar technique was developed by Lee [35] and gener-
alized by Plyukhin [46]. Their version is constant time but
requires atomic double-word fetch-and-add on a location
containing both a pointer and an unbounded sequence num-
ber. Unlike double-word CAS, double-word fetch-and-add is
not supported by modern machine architectures.
In the preliminary version of this paper [8], we describe

our reference-counting algorithm with deferred decrements
but without deferred increments. It has the same theoretical
time and space bounds. We also describe how the technique
can be extended to enable safe atomic loads and stores of
more general types other than reference-counted pointers.
Most recently Correia et al. developed OrcGC [14], an

automatic memory reclamation scheme that is also based
on atomic reference-counted pointers supported under the
hood by a novel variant of hazard pointers. Their approach
is lock-free and guarantees a linear bound on the number of
unreclaimed objects. Similarly to previous work and unlike
our work, they protect the managed object from unsafe recla-
mation when the reference count hits zero, rather than pro-
tecting the reference count from being decremented. Their
algorithm also requires the use of an unbounded sequence
number, which they store in the high-order bits of the refer-
ence count. Similarly to our work, they also take advantage
of the fact that short lived references need not modify the
reference count at all, and can instead temporarily protect
the managed object with their hazard-pointer-like scheme.

Deferred Reference Counting. Deutsch and Bobrow [17]
introduce deferred reference counting for garbage collected
languages, which consists in eagerly counting references
present in the heap, but ignoring those in registers and on
the stack. Objects that reach a heap reference count of zero
are placed in a łzero-count tablež. Periodically, the garbage
collector then scans the stack and registers to determine
which objects in the zero-count table are reachable, remov-
ing them from the zero-count table, or which are unreach-
able, and hence can be safely destroyed. Subsequent work by
Bacon et al. [4], Levanoni and Petrank [36], and Blackburn

and McKinley [7] further build on the idea of deferred ref-
erence counting, identifying additional situations in which
reference-count updates can be deferred or elided entirely.
Unlike our method, all of this prior work focuses specif-

ically on languages with automatic garbage collection and
require pausing processes and hence are not lock-free. Al-
though we borrow the name łdeferred reference countingł
due to the high-level conceptual similarities, our techniques
and methods are substantially different because they apply
to manually memory-managed languages.

Single-Writer Atomic Copy. Our algorithm uses a recently
proposed single-writer atomic copy primitive. More specifi-
cally, Blelloch and Wei [9] show how to implement a Desti-
nation object which supports reading from, writing to, and
copying into with the restriction that only one process can
by writing to or copying into a Destination object at a time.
The copy into operation, swcopy, takes as input a pointer to
a memory location and atomically copies the value from that
memory location into the destination object. Their imple-
mentation supports all three operations in constant time and
uses𝑂 (𝑀+𝑃2) space for𝑀 destination objects. Furthermore,
it only uses single-word CAS and does not use unbounded
sequence numbers. Their implementation achieves wait-free,
constant-time swcopy by having read operations help copies
that are in progress.

3 Overview of Our Approach

Recall that the difficulty of implementing safe concurrent
reference counting is the possibility for a race between a
decrement that sets the count to zero, initiating reclamation,
and an increment, which increments the counter back above
zero, giving the appearance that the managed resource is
still live. Our idea is, intuitively, that if there is an increment
racing with a decrement, to delay the decrement until after
the increment has completed.

Our key insight is that this can be achieved by applying a
hazard-pointers-like scheme where the resource being pro-
tected is neither a memory block nor a managed object, but
rather the reference count itself that is attached to a man-
aged object. This leads to simple algorithm for concurrent
reference counting. To obtain a new pointer to a reference-
counted object, our algorithm acquires the reference count
of the object to protect it, then increments the counter and
releases the protection. To discard a pointer, the reference
count of the object is retired, which, when ejected (i.e., at
some point in time when the reference count is not acquired
by any increment), decrements the reference count, deleting
the managed object and reclaiming the memory if it reaches
zero. By delaying decrements until all the increments that
started before it complete, we ensure that an object is safe to
collect as soon as its reference count hits zero. This contrasts
with previous techniques [24, 28] that perform decrements

529

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

eagerly and use SMR to delay memory reclamation after a
reference count hits zero.
Note that in our algorithm, a reference count could be

retired multiple times before being ejected a single time.
This could happen, for example, in an execution where three
pointers to the same reference-counted object are discarded
concurrently. Traditional hazard pointers interfaces [29, 40,
42] explicitly disallow resources from being retired more
than once, which make sense in the SMR setting, but not
when managing more general resources such as reference
counts. To support these more diverse use cases, we define
a generalization of hazard pointers called acquire-retire and
show how to implement it efficiently, with all operations
taking only constant time in expectation.

Lastly, we extend our reference-counting algorithm, which
defers decrements, with what we call snapshots, which can
be thought of as deferred increments. When a reference to
an object is short lived, such as during the traversal of a
linked data structure, a standard reference-counting scheme
would have to increment and decrement the reference count
in quick succession. Instead, we observe that we can apply
acquire-retire to temporarily protect the reference count dur-
ing the snapshot’s lifetime. This avoids both the increment
and the decrement, which we show substantially improves
the practical performance of our scheme.

3.1 Our Reference-Counting Library

To illustrate and evaluate our techniques, we implemented
them as a library for C++. Our implementation makes use of
standards-compliant C++ features, including C++11 atomics
and memory orderings, and uses no OS- or architecture-
dependent code. In this section, we briefly discuss the in-
terface of our library, compare it to the interfaces of other
memory reclamation techniques, and discuss an important
practical feature that allow us to efficiently implement a
range of concurrent data structures.

Our library consists of three class templates, starting with
atomic_rc_ptr<T>, which provides thread-safe management
of an rc_ptr<T>, which manages a reference-counted pointer
to an object of type T. The atomic_rc_ptr<T> interface is
modelled after atomic<shared_ptr<T>> in the C++ standard,
while rc_ptr<T> is designed to closely mimic shared_ptr<T>.
Lastly, we provide snapshot_ptr<T>, which facilitates low-
cost reads of an object managed by an atomic_rc_ptr<T>

by protecting it with a deferred increment, rather than an
explicit increment of the reference counter. We describe the
usage of these types in more detail in the following sections.

atomic_rc_ptr. atomic_rc_ptr<T> is closely modelled after
C++’s atomic<shared_ptr<T>>. It provides support for all of
the standard operations, such as atomic load, store, and CAS.

ś load(). Atomically creates an rc_ptr to the currently man-
aged object, returning the rc_ptr.

ś get_snapshot(). Atomically creates a snapshot_ptr to the
currently managed object, returning the snapshot_ptr.

ś store(desired). Atomically replaces the currently man-
aged pointer with desired, which may be either an rc_ptr

or a snapshot_ptr.
ś compare_and_swap(expected, desired). Atomically
compares the managed pointer with expected, and if they
are equal, replaces the managed pointer with desired. The
types of expected and desired may be either rc_ptr or
snapshot_ptr, and need not be the same.

ś compare_exchange_weak(expected, desired). Same
as compare_and_swap but, if the managed pointer is not
equal to expected, loads the currently managed pointer
into expected. This operation may spuriously return false,
i.e. it is possible that the value of expected does not change.

The most interesting point of the interface is that it sup-
ports two flavors of load operations, load and get_snapshot,
which return rc_ptr and snapshot_ptr respectively.

rc_ptr and snapshot_ptr. The rc_ptr type is closely mod-
elled after C++’s standard library shared_ptr. It supports all
pointer-like operations, such as dereferencing, i.e. obtaining
a reference to the underlying managed object, and assign-
ment of another rc_ptr to replace the current one. It is safe
to read/copy an rc_ptr concurrently from many threads, as
long as there is never a race between one thread updating
the rc_ptr and another reading it. Such a situation should
be handled by an atomic_rc_ptr.
The snapshot_ptr type supports all of the same opera-

tions as rc_ptr, except that snapshot_ptr can only be moved
and not copied. Additionally, while rc_ptr can safely be
shared between threads, snapshot_ptr should only be used
locally by the thread that created it. The use of snapshot_ptr
should result in better performance than rc_ptr provided
that each thread does not hold too many snapshot_ptr at
once. If a thread exceeds the soft limit on snapshot_ptr (see
Section 5.2), their performance will degrade to similar to or
slightly worse than rc_ptr. Therefore, snapshot_ptr is ideal
for reading short-lived local references, for example, reading
nodes in a data structure while traversing it.
To illustrate our library and the three types, we refer to

an implementation of a concurrent stack in Figure 1a, which
we elaborate on in the next section. The head node of the
stack is stored in an atomic_rc_ptr because it may be modi-
fied and read concurrently by multiple threads. Each node
of the stack stores its next pointer as a non-atomic rc_ptr.
This is safe, because although multiple threads may read the
same pointer concurrently, the internal nodes of the stack
are never modified, only the head is. Lastly, we can use a
snapshot_ptr while performing pop_front, since reading the
head is a short-lived local reference that will never be shared
with another thread.

Support for Marked Pointers. A common optimization in
concurrent data structures is to steal some of the unused

530

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

bits from a pointer to mark links in the data structure as
pending deletion. Since our reference-counted pointer algo-
rithm uses plain single-word pointers and does not inter-
nally steal any bits, it is possible to expose those redundant
bits to the programmer for them to use in this fashion. Our
pointer types therefore include a customization point that
allows a markable pointer type to be used in place of raw
pointers internally, and allows custom behavior to be added
via a policy class. We have used this to implement mark-

able versions of our types that offer get_mark, set_mark, and
compare_and_set_mark, which require no manual bit twid-
dling from the programmer, allowing them to easily and
efficiently implement data structures with marked links.

3.2 Usability Comparison to Manual SMR

Our interface is closely modeled after and designed to be
as easy to use as the standard C++ types. In Figure 1, we
depict three implementations of a concurrent stack, using
our library, hazard pointers, and RCU. Our code avoids the
potential pitfalls of manual SMR, as it is impossible to read
the value stored in head without protecting it automatically,
and no manual retires are necessary. Although calling re-
tire is quite simple in this example, it is not always so easy.
Figure 2 depicts a snippet of code from an implementation
of the Natarajan and Mittal tree [44]. This code cleans up
deleted nodes from the tree by swinging a pointer from a
node to one of its descendants. It is a subtle but important
detail to notice that in the presence of concurrent updates,
this operation may delete multiple nodes, and hence may
be required to retire many nodes, not just successor. In Sec-
tion 8, we discuss how this bug and others have appeared in
the artifacts of several published papers written by memory
management experts.

4 Defining the Acquire-Retire Interface

We propose a generalization of hazard pointers for resource
management called acquire-retire. As with hazard pointers,
it supports four operations: acquire, release, retire, and eject.
The generalization is that it allows multiple retires of the
same handle, which is critical in our reference-counting im-
plementation. An acquire takes a pointer to a location con-
taining a resource handle, reads the handle and protects the
resource, returning the handle. A later paired release, releases
the protection. A retire is used to indicate the resource is
no longer needed. A later paired eject will return the re-
source handle indicating it is no longer protected and safe
to destruct. We say a retire, or its corresponding destruct, is
delayed between the retire and when its handle is ejected.
For our time and space bounds, we require that every retire
is followed by at least one eject. All operations are lineariz-
able [31], i.e., must appear to be atomic.
We describe a constant-time implementation of acquire-

retire, that only requires single-word memory instructions,

and for 𝑃 processors and 𝐾 protected resources has 𝑂 (𝑃𝐾)

memory overhead. Describing an efficient implementation of
acquire-retire requires two insights. The first is that hazard
pointers can be combined with a recent result on atomic
copy [9] to ensure constant-time acquire. The second insight
is that multiple concurrent retires of the same handle can be
supported by appropriately keeping track of multiplicity.

Allowing multiple retires of the same handle makes defin-
ing the behavior of retire and eject more subtle. The high-
level approach is to associate acquire operations with retire

operations rather than handles. In our interface, acquire(𝑝𝑡𝑟 ,
𝑎𝑛𝑛) takes as input a pointer to a memory location (𝑝𝑡𝑟) stor-
ing a resource handle, and a pointer to an announcement slot
(𝑎𝑛𝑛). It returns the handle stored at the memory location.
The release(𝑎𝑛𝑛) operation takes as input an announcement
slot, and has no return value. In a sequential execution, we
say that an acquire(𝑝𝑡𝑟 , 𝑎𝑛𝑛) operation is active between
its execution and the execution of either the next acquire(∗,
𝑎𝑛𝑛) operation or the next release(𝑎𝑛𝑛) operation, whichever
comes first. After this point, the acquire is said to be inactive.
The retire(ℎ) operation takes as input a handle and the eject

operation either returns ⊥ or a handle.
Our implementation requires that acquire/release opera-

tions on the same announcement slot are never concurrent
with each other. Typically, each process will have its own
private set of announcement slots. Announcement slots can
either be allocated statically, or dynamically as threads are
created and retired, in the same way as hazard pointers [40].
We formally specify the behaviour of the interface below.

Definition 4.1 (Acquire-Retire). Any proper, concurrent ex-

ecution can be linearized to a sequential history with the fol-

lowing guarantees:

1. Each acquire(𝑝𝑡𝑟 , ∗) returns the handle currently stored in

the memory location pointed to by 𝑝𝑡𝑟 .

2. Let 𝑓 be a function that maps each acquire returning ℎ

to either a later retire(ℎ) or ⊥. Let 𝑔 be an injective (one-

to-one) function that maps each eject returning ℎ to an

earlier retire(ℎ). For all 𝑓 , there is a 𝑔 such that whenever

𝑓 (𝐴) = 𝑔(𝐸), the acquire 𝐴 is inactive by the time eject 𝐸

is executed.

We note that Definition 4.1 captures our intuition of what
the interface is supposed to protect against. In particular,
it ensures that any destruct of a resource placed after the
retire and eject will happen after all processes release that
resource. If there are multiple retires on the same handle, it
ensures that each is mapped to at most one eject.
Definition 4.1 never forces eject operations to return a

handle, so for an implementation of acquire-retire to be use-
ful, it has to provide some guarantees on how often retires
are ejected. We say a retire is ejected if there is an eject

mapped to the retire. Assuming each call to retire is always
followed by a call to eject, our algorithm ensures that there
are always no more than 𝑂 (𝐾𝑃) retires that have not been

531

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

struct Node { T t; rc_ptr<Node> next; }

atomic_rc_ptr<Node> head;

void push_front(T t) {

rc_ptr<Node> p = make_rc<Node>(t, head.load());

while (!head.compare_exchange_weak(

p->next, p)) {}

}

optional<T> pop_front() {

snapshot_ptr<Node> p = head.get_snapshot();

while (p != nullptr &&

!head.compare_exchange_weak(

p, p->next)) { }

if (p != nullptr) return {p->t};

else return {};

}

(a) Our Library

struct Node : rcu_obj_base<Node> {

T t; Node* next; };

atomic<Node*> head;

void push_front(T t) {

auto p = new Node{{}, t, head.load()};

while (!head.compare_exchange_weak(

p->next, p)) {}

}

optional<T> pop_front() {

rcu_reader guard;

auto p = head.load();

while (p != nullptr &&

!head.compare_exchange_weak(

p, p->next)) { }

if (p != nullptr) {

p->retire();

return {p->t};

}

else return {};

}

(b) RCU

struct Node : hazptr_obj_base<Node> {

T t; Node* next; };

atomic<Node*> head;

void push_front(T t) {

auto p = new Node{{}, t, head.load()};

while (!head.compare_exchange_weak(

p->next, p)) {}

}

optional<T> pop_front() {

Node* p;

hazptr_holder h;

do {

p = h.get_protected(head);

if (p == nullptr) return {};

} while (!head.compare_exchange_weak(

p, p->next)) { }

if (p != nullptr) {

p->retire();

return {p->t};

}

else return {};

}

(c) Hazard Pointers

Figure 1. C++ implementations of an ABA-safe, concurrent stack using our library, RCU, and hazard pointers. The syntax for
hazard pointers and RCU is based on a C++ standards proposal [43], and is implemented in Folly [21].

void cleanup() {

...

/* Update the left child of ancestor to point to sibling */

if(ancestor.left->compare_and_swap(successor, sibling)) {

/* retire nodes on path from successor to sibling */

for(Node* n = successor; n != subling;) {

Node* tmp = n;

if(getFlag(n->left)) {

retire(n->left);

n = n->right;

} else {

retire(n->right);

n = n->left;

}

retire(tmp);

}

return true;

} else return false; }

Figure 2. Manually calling retire is easy to forget and it
sometimes adds non-trivial code. The highlighted portion of
the code is not needed in our library.

ejected, where 𝐾 is the total number of announcement slots.
We defer the description of our algorithm for acquire-retire
until Section 6.

5 Deferred Reference Counting

Armed with the acquire-retire technique, we now describe
our algorithms for reference counting with deferred decre-
ments and increments. The interface supports atomically
storing to, loading from, andCASing into amutable reference-
counted pointer in a shared location. Our algorithms support
these operations with constant-time overhead, have 𝑂 (𝑃2)

memory overhead, and defer at most 𝑂 (𝑃2) reference-count
decrements (see Theorem 1). We note that deferred incre-
ments is just a practical optimization which does not affect
these bounds.
Both algorithms also have the useful property that refer-

ences are implemented as raw pointers, which means two
things. First, that a reference occupies just a single word,
unlike some implementations [52] which use a double-word

representation and require a double-word CAS. Second, that
we do not łstealž any bits of the pointer representation, as
is done by some libraries [21]. This is important in some
applications, since it leaves unused bits of the pointer repre-
sentation for the user to utilize, which is necessary in many
common implementations of lock-free data structures that
łmarkž pointers. For example, the Harris linked list [26] or
Natarajan and Mittal’s binary search tree [44].

5.1 Deferred Decrements

Recall that the race we are trying to avoid when designing a
scheme for concurrent reference counting occurs when one
thread removes a reference, decrementing the corresponding
counter to zero, at the same time that another thread creates
a new reference, incrementing the counter. Such races in
which a location can be simultaneously read by one thread
and updated by another can occur in just about any lock-
free data structure. Our approach solves this problem by
using acquire-retire to protect the reference count and defer
decrements from being applied while there is a potential
increment in progress. We say a decrement is deferred if a
reference has been overwritten or otherwise deleted, but
the count on the corresponding managed object has not
yet been decremented. The eject operation on the reference
count corresponds to decrementing the count and, if it goes
to zero, reclaiming the managed object.

Algorithms and Analysis. Figure 3 depicts our algorithm
using a reference-counting interface similar to the one used
by Herlihy et al. [28] and Detlefs et al. [16]. We assume each
reference-counted object has a counter attached that can be
atomically incremented or decremented with addCounter,
which returns the old value.

The load operation atomically loads a pointer from a
shared memory location into a local pointer and returns

532

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

1 using ref = Object*;

3 AnnouncementSlot announcement[P];

5 ref load(ref* A) {

6 ref ptr = acquire(A, &announcement[pid]);

7 if (ptr != nullptr) increment(ptr);

8 release(&announcement[pid]);

9 return ptr; }

11 void store(ref* A, ref desired) {

12 if (desired != nullptr) increment(desired);

13 ref current = fetch_and_store(A, desired);

14 if (current != nullptr) {

15 retire_and_eject(current); }

17 bool cas(ref* A, ref expected, ref desired) {

18 ref ptr = acquire(&desired, &announcement[pid]);

19 if (compare_and_swap(A, expected, desired)) {

20 if (desired != nullptr) increment(desired);

21 if (expected != nullptr) {

22 retire_and_eject(expected); }

23 release(&announcement[pid]);

24 return true;

25 } else {

26 release(&announcement[pid]);

27 return false; } }

29 void destruct(ref ptr){

30 if (ptr != nullptr) {

31 decrement(ptr); } }

33 void retire_and_eject(ref ptr) {

34 retire(ptr);

35 optional⟨ref⟩ e = eject();

36 if (e != ⊥) decrement(e); }

38 void increment(ref ptr) {

39 ptr->addCounter(1); }

41 void decrement(ref ptr){

42 if (ptr->addCounter(-1) == 1) {

43 delete ptr; } }

Figure 3. Operations for atomic reference-counted pointers
with deferred decrements. pid is the unique id of the current
processor, 0 ≤ pid < 𝑃 .

it. Since load creates a new reference to the object, it incre-
ments the reference count. To protect against a potential race
between this increment and a decrement setting the count to
zero, the increment is surrounded by an acquire and release.

The store operation atomically copies a local pointer into
a shared memory location. Since this creates an additional
reference to desired, it first increments the reference count.
Note the subtle detail that unlike in load, this increment does
not need to be protected by an acquire and release. This is
because the existence of the argument desired guarantees
that the reference count is at least one, and hence can not race
to zero during this operation. Our implementation writes
into the shared memory location using a fetch-and-store
operation so that it can decrement the reference count of the
pointer that was overwritten. Decrementing the reference
count immediately would introduce a race, so instead, we
defer the decrement by retiring the pointer. Each retire is
always followed by an eject of a previously retired pointer,
which is then decremented. Recall that pairing each retire

with an eject is what allows acquire-retire to yield efficient
time and space bounds. Notice that a process might have
the same pointer in its retired list multiple times, which is

why we need the more general acquire-retire interface rather
than hazard pointers.
The cas operation works similarly to store, except that it

only modifies the reference counts if the underlying CAS
succeeds. Note that for safety reasons, cas must first pro-
tect desired with an acquire before performing the CAS.
If it did not, the CAS could succeed right before another
thread stored to A, which could cause the reference count
of desired to be decremented. If this decrement took the
count to zero, initiating reclamation, the object would be
unsafely destroyed before the cas had a chance to increment
the reference count.

The destruct operation takes as input a reference-counted
pointer that is no longer needed and destroys it. In an object-
oriented language, such as C++ or Rust, this would be han-
dled automatically by the reference-counted pointer’s de-
structor. Note that since it would be an unsafe race to read
from a pointer while it was being destroyed, destruct does
not have to call retire but can instead eagerly decrement.

The retire_and_eject, increment and decrement operations
are used internally and are not part of the interface. The
decrement operation is responsible for initiating reclamation
if the counter is decremented to zero. In our pseudocode, by
delete, we mean to destroy the underlying Object, which in-
cludes recursively calling destruct on any reference-counted
pointers it owns, and reclaiming the memory it occupies.

Theorem 1 (Deferred Reference Counting): On 𝑃
processes, any number of reference-counted objects with

references stored in shared mutable locations supporting

atomic load, store, and CAS can be implemented safely with:

1. references as just pointers (i.e., single-word addresses),

2. 𝑂 (1) time for load,

3. 𝑂 (1) expected time for store and CAS excluding the cost of

any call to delete resulting from a decrement

4. 𝑂 (𝑃2) space overhead and 𝑂 (𝑃2) deferred decrements,

5. only single-word read, write, CAS, fetch-and-store, and

fetch-and-add.

This implies constant-time overhead since the deletion of
the retired objects is required by any non-trivial reclamation
scheme. The proof of Theorem 1 is deferred to the full paper.

Copy versus Move Semantics. Our algorithms in Figure 3
implement store and cas with copy semantics. That is, since
they effectively create a new reference to desired, they incre-
ment the corresponding reference count. In many practical
situations however, the caller may have no subsequent use
for their copy of desired, which may be soon to be destruc-
ted, leading to a decrement of the reference count. In this
situation, it is favorable to implement versions of store and
cas that have move semantics, i.e., that consume the copy of
desired passed as an argument. This removes the need to
increment the reference count since the caller gives up their
count. Our C++ library implements this optimization.

533

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

5.2 Deferred Increments / Snapshots

A big performance bottleneck that appears when implement-
ing concurrent data structures using pure reference counting
occurs when traversing linked nodes. On a node-based con-
current data structure, a safe traversal requires temporarily
incrementing and decrementing the reference counts of all
the nodes encountered to prevent them from being deleted
while being read. This is inefficient for multiple reasons; in-
crements and decrements must be performed with an atomic
fetch-and-add instruction, and these may contend if multiple
processors are operating on the same node concurrently.
This contrasts with other SMR techniques such as haz-

ard pointers, which just perform a write to a single-writer
location for each node traversed, or epoch-based methods,
which perform a single write before beginning the traversal.
Neither of these methods experience any contention. Fur-
thermore, due to cache coherency protocols, incrementing
the reference count of a node reserves the cache line in ex-
clusive mode, causing the other processes to experience a
cache miss the next time they access this node.

In the previous section, we gave algorithms for reference
counting with deferred decrements. Although they achieve
constant-time overhead, they are still prone to the practi-
cal performance hit of frequent increments. To improve our
scheme in practice, we therefore introduce the notion of de-
ferred increments. Specifically, if an algorithm needs to briefly
protect an object, such as during the traversal of a linked data
structure, but does not need to keep a long-lasting reference,
we observe that there is no need to eagerly increment the
reference count. Instead, the algorithm can use the existing
infrastructure of acquire-retire to temporarily prevent any
decrements from being applied while the reference is held.
We refer to such a protected reference as a snapshot. Snap-
shots prevent deferred decrements from being applied while
they are held, and when they are released the protection can
be cleared, resulting in no change to the reference counter.
By using reference counting to protect long-lived refer-

ences, such as links inside the data structure, and snapshots
to protect short-lived references, we obtain the best of both
worlds ś the ability to traverse the data structure without
introducing contention, without the burden of having to
manually retire nodes that are no longer reachable. This is
not possible with a pure reference counting or pure SMR
(e.g., hazard pointers) approach.

Snapshot Algorithm. We show the algorithms for snap-
shots in Figure 4. The get_snapshot operation is similar to
load, except that it returns a Snapshot, which is a protected
local reference coupled with an AnnouncementSlot. When a
snapshot is no longer needed, it can be released with the
release_snapshotmethod. Note that the same processor that
acquired the snapshot must release it.

Since multiple snapshots may need to be held by a single
processor, our implementation allocates seven additional

1 using Snapshot = pair⟨ref, AnnouncementSlot*⟩;
2 int MAX_SNAPSHOTS = 7;

4 AnnouncementSlot snapshots[P][MAX_SNAPSHOTS];

5 thread_local int next;

7 Snapshot get_snapshot(ref* A) {

8 AnnouncementSlot* slot = get_slot()

9 ref ptr = acquire(A, slot);

10 return {ptr, slot}; }

12 void release_snapshot(Snapshot S) {

13 auto [ptr, slot] = S;

14 if (ptr != nullptr) {

15 if (slot->read() == ptr) release(slot);

16 else decrement(ptr); } }

18 AnnouncementSlot* get_slot() {

19 for (int i = 0; i < MAX_SNAPSHOTS; i++)

20 if (snapshots[pid][i].read() == ⊥)
21 return &snapshots[pid][i];

22 AnnouncementSlot* slot = &snapshots[pid][next];

23 increment(slot->read())

24 next = (next + 1) % MAX_SNAPSHOTS;

25 return slot; }

27 void destruct(ref ptr){

28 if (ptr != nullptr) {

29 retire_and_eject(ptr); } }

Figure 4. Interface and algorithm for snapshots. This algo-
rithm is compatible with the reference-counting algorithm
of Figure 3, except that the destruct operation from Figure 3
must be replaced with the one given here.

announcement slots per processor. This means that the eight
total announcement slots of a process fit on a single cache
line on common architectures. By packing them into a single
cache line, the ejectAll method of acquire-retire does not
suffer any noticeable performance loss.
When a process wishes to acquire a snapshot, the algo-

rithm scans its announcement slots and selects the first
empty slot it finds. If no slots are available, it selects one of
the existing slots and eagerly increments the reference count
on the protected object (i.e., it applies the deferred increment)
and takes over the slot for itself. In our implementation, the
slot to take over is selected in a round-robin fashion. When
a snapshot is released, it checks whether its announcement
slot has been reused, and if so, correspondingly decrements
the reference count. Otherwise, no decrement is necessary,
and the announcement can simply be released.

Lastly, to safely hold snapshots, we need to slightly modify
the destruct operation for references. If a snapshot is taken
from a shared reference, and that reference is subsequently
updated, the reference count can not be eagerly decremented,
or the object protected by the snapshot might be destroyed.
Instead, the decrement must be deferred by calling retire.

6 Acquire-Retire Algorithm

We now describe how to implement constant-time acquire,
release, retire, and expected constant-time eject. This algo-
rithm uses techniques from hazard pointers [40] and pass-
the-buck[28] with some changes to support the more general
acquire-retire interface.

534

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

1 using AnnouncementSlot = Destination⟨optional⟨T⟩⟩;

3 thread_local list⟨T⟩ rlist;

4 thread_local list⟨T⟩ flist;

6 T acquire(T* ptr, AnnouncementSlot* ann) {

7 ann->swcopy(ptr);

8 return ann->read(); }

10 void release(AnnouncementSlot* ann) {

11 ann->write(⊥); }

13 void retire(T t) {

14 rlist.add(t); }

16 optional⟨T⟩ eject() {

17 perform steps towards ejectAll(rlist);

18 if (!flist.is_empty())

19 return flist.pop();

20 return ⊥; }

22 void ejectAll(list⟨T⟩ rl) {

23 list⟨T⟩ plist = empty;

24 // loop through all existing AnnouncementSlots

25 for each AnnouncementSlot* ann {

26 optional⟨T⟩ a = ann->read();

27 if(a != ⊥) plist.add(a); }

28 list⟨T⟩ freed = multiSetDiff(rl, plist);

29 flist.add(freed);

30 rlist.remove(freed); }

Figure 5. Implementing acquire-retire. Destination is a des-
tination object supporting atomic copies [9]. slots is a list
of all of the announcement slots owned by all processors.

The standard lock-free version of acquire from hazard
pointers executes a loop in which the pointer to be protected
is read from a shared location and written into a local an-
nouncement slot. Each iteration, the pointer is re-read from
the shared location to check whether it still matches the one
that was announced. To reduce the complexity of acquire
to constant time, we leverage a recently proposed primitive
called swcopy [9], which atomically copies from one location
to another location, but requires that the destination location
is only written to by a single process. Note that making the
read of the shared location and write to the announcement
slot appear to happen atomically is precisely the purpose of
the lock-free acquire loop, and hence, by replacing it with
a swcopy, we can implement acquire in constant time. To
use this primitive, we would have to implement announce-
ment slots using the Destination object described in Section 2.
Blelloch and Wei [9] present an implementation of𝑀 Desti-

nation objects using 𝑂 (𝑀 + 𝑃2) space such that read, write
and swcopy all take constant time.
A release(ann) operation unprotects by simply clearing

the announcement slot ann, and retire(x) simply adds x to a
process-local retired list called rlist. To determine which han-
dles are safe to eject, the ejectAll(rl) method loops through
all the announcement slots and makes a list of all the handles
that it sees. We call this list of handles plist for łprotected
listž. If a handle is seen multiple times in 𝐴, then it will also
appear that many times in plist (this differs from standard
hazard arrays). Next, ejectAll computes a multi-set differ-
ence between rl and plist. This step can be implemented in
𝑂 (|𝑟𝑙 | + 𝐾) expected time using a local hash table, where 𝐾
is the total number of announcement slots. The result of this

multi-set difference are handles that can be safely ejected
without violating the specifications of acquire-retire. It is
important that we keep track of multiplicity and perform
multi-set difference becausewhen a handle is retiredmultiple
times, each occurrence of this handle in the announcement
slots might be associated with a different retire. So if a han-
dle appears in the retired list 𝑠 times and the announcement
slots 𝑡 times, it is safe to eject only 𝑠 − 𝑡 copies of this handle.
An eject is essentially a deamortized version of ejectAll.

Every time it is called, it performs a small constant num-
ber of steps towards ejectAll(rlist), where each hash table
operation counts as a single step. Thus eject takes expected
constant time. When ejectAll returns a list of handles, they
get removed from rlist and added to a local free list to be
returned one at a time by the following ejects.
Pseudocode for this implementation appears in Figure 5

and its properties are summarized in Theorem 2.

Theorem 2 (Acquire-Retire): For an arbitrary number of

resources and locations, 𝑃 processes, and at most 𝐾 resources

protected at any given time, the acquire-retire interface can be

supported with:

1. 𝑂 (1) time for acquire, release, and retire,

2. 𝑂 (1) expected time for eject,

3. 𝑂 (𝐾𝑃) deferred retires,

4. 𝑂 (𝐾𝑃) space overhead assuming 𝐾 ≥ 𝑃 , and

5. only single-word read, write and CAS

Proof (outline). To show that Algorithm 5 is a linearizable
implementation of the acquire-retire interface, we need to
prove both properties in Definition 4.1. Here we outline the
main ideas of the proof. The full proof of correctness is left
for the full paper. The first property is reasonably straightfor-
ward since we use an atomic copy, returning the value copied.
For the second property we first identify the linearization
points of the four operations, which are at Lines 7, 11, 14,
and 19. We then need to consider all functions 𝑓 that map
acquires to later retires. For any such function we construct
an injective function 𝑔 from ejects to retires that satisfies the
required property, i.e., whenever 𝑓 (𝐴) = 𝑔(𝐸), the acquire𝐴
is inactive by the time eject 𝐸 is executed. The idea here is to
tag (for proof purposes) all elements of the announcement
slots for acquires 𝐴 with the retire 𝑓 (𝐴). Similarly we tag all
elements in the local retired list with the retire that added it.
When taking the multiset difference from the retired list to
the announcement slots, we can pair, one-to-one, elements
in the retired list with ones that match in the announcement
slots. By the algorithm, any that match will not be placed
on the free list by ejectAll. The remaining will be, and when
later ejected, the constructed function 𝑔 will map the eject to
the retire tag on the handle. Hence, since all active acquires,
and corresponding tagged retires, are in the announcement
slots, for an acquire 𝐴 and eject 𝐸, with 𝑓 (𝐸) = 𝑔(𝐴), 𝐴 is
no longer active at the eject. □

535

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

7 Evaluation

In this section, we provide an experimental evaluation of
our C++ library across two benchmark setups. First, we com-
pare its performance to other implementations of reference-
counted pointers. Second, we compare our approach to the
performance of manual SMR techniques.We performed some
preliminary experiments using the wait-free acquire algo-
rithm, and found that it was as fast as the lock-free one after
applying a fast-path slow-path methodology [34], but since
the performance was mostly determined by the fast path, we
decided to use the simpler lock-free implementation for the
rest of the experiments.

Setup. We ran our experiments on a 4-socket machine
with 72 physical cores in total (Intel(R) Xeon(R) E7-8867
v4, 2.4GHz), 2-way hyperthreading, and 45MB L3 cache. The
machine’s interconnection layout is fully connected mean-
ing that all four sockets are equidistant from each other. We
interleaved memory across sockets using numactl -i all. For
scalable memory allocation we used the jemalloc library [20].
All of our experiments were written in C++ and compiled
with g++ version 9.2.1 on optimization level O3. Our exper-
iments vary the number of threads from 1 to 200, which
serves to also measure the effect of oversubscription since
our hardware supports up to 144 with hyperthreading.

7.1 Comparison of Reference-Counting Techniques

We compare with implementations from four different li-
braries: the atomic_ free functions for shared_ptr3 from
libstdc++ (The GNU C++ library [37]), Anthony William’s
just::thread library [52], Facebook’s Folly library [21], and
OrcGC [14]. The implementation in libstdc++ is lock-based
whereas the others are lock-free. Both just::thread and Folly
use something similar to the split reference count technique
described in [51, Chapter 7.2.4]. We also implemented two
reference-counted pointers based on Herlihy et al. [28]. The
first follows their approach as closely as possible, while the
second is an improved version that we optimized. Specifically,
we replaced some of the CAS loops in the original algorithm
with fetch-and-add and fetch-and-store instructions where
applicable to improve performance.

Microbenchmark #1: Load/Store Throughput. We main-
tain an array of 𝑁 shared memory locations, each storing
an atomic reference counted pointer to a 32-byte object. The
array is padded so that each pointer is on a different cache
line. Each thread picks a memory location uniformly at ran-
dom and performs either a load or a store. Threads perform
a store with probability 𝑝𝑠 and a load with probability 1−𝑝𝑠 .
Before a store, the thread allocates a new reference-counted
pointer to a new object to be stored. After a thread performs
a load, which increments the reference count, it reads the

3At the time of writing, the latest C++ standard has deprecated these free

functions and replaced them with specializations of std::atomic. How-

ever, neither libstdc++ or libc++ have yet provided an implementation.

value being pointed to, and then destructs the loaded pointer.
We show results for 𝑁 = 10, a highly contended workload,
and 𝑁 = 10𝑀 , a workload with almost no contention. We
run each experiment for 5 seconds, which was sufficient
for reaching steady state performance, and report the total
throughput of loads and stores averaged across 5 runs.

Results. The results of these experiments are depicted in
Figures 6aś6c. In the high-contention workloads (6aś6b) our
implementation (DRC) consistently outperforms the others,
particularly on the load-heavy workload. Though Folly and
just::thread use similar a similar technique, we found that
Folly’s implementation consistently outperforms just::thread.
This is because Folly’s implementation is highly optimized.
For example, they pack a 48-bit pointer and a 16-bit counter
into a single word to avoid the double-word-width CAS used
by just::thread. The libstdc++ implementation achieves little
if any observable speed up after 16 threads because it uses a
set of 16 global locks. The second-best overall competitor is
Herlihy’s algorithm, our improved version of which comes
close to the performance of our algorithm on the store-heavy
workload. Although it does not exhibit the strongest through-
put, OrcGC shows consistent scaling. On the read-heavy
workload, it catches up to the performance of Herlihy at 144
threads, and takes over second place once oversubscription
is entered. On the store-heavy workload, however, OrcGC is
consistently outperformed by both Folly and Herlihy.

On the low contention workload, Folly is the winner, while
Herlihy and our algorithm come in second. just::thread and
OrcGC trail behind, and libstdc++ exhibits no scaling at all.
Folly’s performance is attributable to the fact that, under
low contention, the work performed by the deferred algo-
rithms to acquire and protect the pointer is almost always
unnecessary. OrcGC’s performance on the store-heavy and
low-contention workloads compared to its stronger earlier
performance on the load-heavy workload suggest that its
store operation is particularly expensive. This can be ex-
plained by the fact that its retire operation, which will be
invoked on each store, performs 𝑂 (𝑃) work, while ours and
Herlihy perform constant expected work.
The tradeoff is that our approach and that of Herlihy

use more memory. They may defer up to 𝑂 (𝑃2) reclama-
tions, while OrcGC defers at most 𝑂 (𝑃) reclamations, and
the other schemes perform no deferred reclamation and al-
ways reclaim immediately. In Figure 6d, we show the av-
erage memory usage in terms of the number of allocated
objects against the number of threads. The average number
of objects allocated for our algorithm is approximately 0.5𝑃2,
while the number allocated by OrcGC is approximately 3𝑃 ,
which matches the theoretically expected bounds.

Microbenchmark #2: Concurrent Stack. We implemented
a concurrent stack using the code shown in Figure 1a, but
also supporting a find operation that takes as input, a value,
and searches the stack, returning true if that value is present.

536

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

GNU C++ just::thread Folly Herlihy Herlihy (optimized) OrcGC DRC

0 50 100 150 200
Number of threads

0

20

40

60

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

(a) 𝑁 = 10, 10% stores

0 50 100 150 200
Number of threads

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)
(b) 𝑁 = 10, 50% stores

0 50 100 150 200
Number of threads

0

50

100

150

200

250

300

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

(c) 𝑁 = 107, 10% stores

0 50 100 150 200
Number of threads

101

102

103

104

A
ll
o
c
a
te

d
 O

b
je

c
ts

(d) Average allocated objects

GNU C++ just::thread Folly Herlihy (optimized) OrcGC DRC DRC (+ snapshots)

0 50 100 150 200
Number of threads

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

(e) 𝑁 = 10, 1% pushes/pops

0 50 100 150 200
Number of threads

0

5

10

15

20

25

30

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

(f) 𝑁 = 10, 10% pushes/pops

0 50 100 150 200
Number of threads

0

2

4

6

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)
(g) 𝑁 = 10, 50% pushes/pops (h) Average allocated objects

Figure 6. Benchmark results comparing reference-counted pointer implementations. Figures 6aś6d compare raw load/store
throughput and memory usage. Figures 6eś6h compare throughput and memory when used to implement a concurrent stack.

Implementations that do not support snapshots perform a
load instead. We maintain an array of 𝑁 = 10 concurrent
stacks, each padded to its own cache line. Every stack ini-
tially has 20 elements. Threads perform a find on a uniformly
random stack with probability 𝑝 𝑓 , or, with probability 1−𝑝 𝑓 ,
a pop from a uniformly random stack followed by a push of
the popped value onto another uniformly random stack (pos-
sibly the same one). If the popped stack was empty, nothing
is pushed. We show results for 𝑝 𝑓 = 0.01, 0.1, 0.5, indicating
read-heavy, read-mostly, and update-mostly workloads.

Results. The results are depicted in Figures 6eś6g. We test
both our non-snapshotting algorithm (DRC) and the full
version with snapshots (DRC + snapshots). The clearest take-
away from these experiments is that snapshotting provides
tremendous benefits, particularly on read-heavy workloads.
Recall that OrcGC also employs a technique similar to our
snapshots, which is why it, too, outperforms the other meth-
ods. Our non-snapshotting algorithm outperforms the re-
maining implementations, but by a smaller margin. At 128
threads, the snapshotting algorithm improves the throughput
of the read-heavy workload by 1.7x compared to OrcGC, 5x
compared to the non-snapshotting algorithm, 7x compared
to our optimized implementation of Herlihy’s algorithm, and
16x compared to Folly. On the update-mostly workload, our
algorithm still outperforms the other implementations by at
least 2x, due to finds not creating contention with updates.

Lastly, in Figure 6h, we show the memory usage in terms
of the number of allocated nodes with respect to the number
of live nodes (the total number of nodes in all of the stacks).
The number of threads in this experiment was fixed at 128. As

the number of live nodes increases, the number of allocated
nodes is asymptotic to the number of live nodes, indicating
that the memory overhead of the schemes is indeed additive,
and not proportional to the number of live nodes.

7.2 Comparison to Manual SMR Techniques

We compare our reference-counting technique with four dif-
ferent manual SMR techniques, hazard pointers (HP) [40],
hazard eras (HE) [47], two-global-epoch IBR [50] and epoch-
based reclamaion (EBR) [22] applied to three different lock-
free data structures: Harris-Michael list [26, 39], Michael
hash table [39], and Natarajan-Mittal tree [44]. When apply-
ing our technique, we use snapshot pointers for the short-
lived references that processes hold onto while traversing
the data structure. In the Natarajan-Mittal tree, each process
holds onto at most five snapshot pointers at a time, and in
the list and hash table, each process holds onto at most three.
To measure the benefits of snapshot pointers, we also bench-
mark our implementation without them, using only rc_ptr,
which increments reference counts eagerly. As a baseline, we
also measure the performance of each data structure when
no memory reclamation is performed, meaning that nodes
are never freed at all.

Benchmarks. We leveraged the IBR benchmark suite [50]
which contains implementations of HP, HE, IBR and EBR
applied to the three data structures. In Section 8, we identify
some bugs in the IBR benchmarking suite related to incor-
rectly applying these memory reclamation techniques. For
our benchmarks, we fixed all of them except the last one,
which only applies to the Natajaran-Mittal tree when used

537

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

EBR HP HPopt IBR HE No MM DRC DRC (+ snapshots)

1 35 70 105 140 170 200
Number of threads

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

200

400

600

800

1000

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(a) List. N=1000, updates=10%. Throughput (L), Memory (R)

1 35 70 105 140 170 200
Number of threads

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

200

400

600

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(b) Hashtable. N=100K, updates=10%. Throughput (L), Memory (R)

1 35 70 105 140 170 200
Number of threads

0

50

100

150

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

200

400

600

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(c) BST. N=100K, updates=10%. Throughput (L), Memory (R)

1 35 70 105 140 170 200
Number of threads

0

10

20

30

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

20

40

60

80

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(d) BST. N=100M, updates=10%. Throughput (L), Memory (R)

1 35 70 105 140 170 200
Number of threads

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

500

1000

1500

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(e) BST. N=100K, updates=1%. Throughput (L), Memory (R)

1 35 70 105 140 170 200
Number of threads

0

20

40

60
T
h
ro

u
g
h
p
u
t

(M
o
p
/s

)

1 35 70 105 140 170 200

Number of threads

0

250

500

750

1000

1250

E
x
tr

a
 n

o
d
e
s
 (

T
h
o
u
s
a
n
d
s
)

(f) BST. N=100K, updates=50%. Throughput (L), Memory (R)

Figure 7. Benchmark results comparing deferred reference counting with manual SMR techniques. Figure 7a shows results for
a Harris-Michael list, Figure 7b for a Michael hash table, and Figures 7cś7f for various workloads on a Natarajan-Mittal tree.

with HP, HE, or IBR. Fixing this would required significant
modifications to the data structure, and would only slow
down the performance of these SMR techniques due to the
extra restarts. Therefore, these experiments depict a gener-
ous estimate of how HP, HE, and IBR would perform when
correctly applied to the Natarajan-Mittal tree. We also opti-
mized the throughput of the HP implementation by reducing
the number of times the announcement array is scanned.
While this significantly improves throughput in some cases,
it does so at the cost of a slight increase in memory.
For each data structure, we tried various sizes and up-

date frequencies. For example in Figure 7c, we initialized
the BST with 100K keys and each process performed 10%
update operations (half insert, and half delete) using a key
chosen uniformly randomly from the range [0, 200𝐾). The
remaining 90% of operations were lookups. For the hash
table experiments, we initialized the number of buckets so
that the average load factor is 1.

Results. The results of these experiments are shown in
Figure 7. In each pair of graphs, throughput is plotted on
the left and space overhead is plotted on the right. Space
overhead is measured by calculating the number of nodes
that were removed from the data structure and not yet freed.

We found that using snapshot pointers is crucial for get-
ting reference counting to scale on many of these lock-free
data structures. It improves performance by up to 40× in
Figure 7e and a minimum of 1.2× in Figure 7b. This optimiza-
tion is what allows automatic reference counting to be com-
petitive with manual SMR. Overall, our reference-counting
technique tends to closely match the throughput and space
usage of optimized hazard pointers (HPopt). One exception is
in the update-heavy workload of Figure 7f where the cost of
reference-count increments and decrements during updates
causes a 38% performance overhead.
We found that our technique generally performs very

well on hash table workloads (one of which is shown in
Figure 7b) because on average, each lookup acquires one
snapshot pointer, which is about as cheap as acquiring a
HP or announcing an epoch during EBR. In this workload,
for thread counts of 140 or higher, our technique actually
outperforms all of the manual SMR techniques.

In general, our technique does not seem to be slowed down
by over-subscription whereas HE, IBR, and EBR are often
severely impacted. The memory usage of HE, IBR and EBR
spike upwards during over-subscription because one stalled
thread can prevent a lot of nodes from being collected.

538

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

In most cases, our throughput is 1.2-2.5× slower than EBR,
but we experience 3-61× less memory overhead. The only
exception is the linked list workload in Figure 7a, where
we are up to 5.1× slower than EBR, but in exchange, we
waste 210× less memory on 200 threads, and 6.5× less on 140
threads. Our memory usage is always within a factor 3 of
HPopt, which indicates that having 𝑃2 delayed decrements
usually translates to holding onto about 𝑃2 extra nodes for
these data structures.
These results show that automatic reference counting,

when implemented efficiently, can perform competitively
with manual memory reclamation techniques. Furthermore,
whenever manual techniques outperform our algorithm, our
algorithm uses significantly less space.

8 Usability Difficulties of Manual SMR

Applying manual memory reclamation techniques to con-
current data structures can be non-trivial and difficult to get
right, even for expert users, often leading to bugs that are
not caught for a long time. In this section, we will discuss
some recurring bugs that we have discovered in research
code while working on memory reclamation. We emphasize
that these bugs exist in the applications of these memory
reclamation techniques, not in the techniques themselves.

Correctly Calling Retire. While some manual techniques
are more difficult to apply than others, one thing that they
have in common is the need for the user to determine when
an object is no longer reachable from the shared data struc-
ture and explicitly call retire on this object. This can be
challenging in a concurrent setting. For example, if there are
two pointers in shared memory to an object and the point-
ers are concurrently cleared by two different processes, it is
not clear which process should be the one to call retire or
how the process even learns that the other pointer has been
cleared. Another issue is that it is easy to forget to retire a
node, especially when there are concurrent operations in-
volved. For example, in the Natarajan and Mittal tree [44],
the delete operation marks an internal node for deletion, and
then calls a cleanup procedure which performs a CAS remov-
ing the node. A common mistake is to only retire a single
internal node after this CAS. However, in the presence of
concurrent deletes, this CAS can potentially remove a long
chain of marked nodes, all of which need to be retired. This
exact memory leak can be found in the artifacts of several
papers [14, 15, 23, 45, 50], some of which are specifically
about concurrent memory reclamation.

Restarts. An important detail that is sometimes missed is
that many of these manual reclamation techniques (HP, HE,
WHE, IBR) often require significant changes to the original
concurrent data structure in order to be applicable. To protect
an object using one of these techniques, a process has to first
announce either a pointer to the object or an epoch, and
then verify that the object has not been retired. If there is

no way to verify this, then the object could have already
been freed before the announcement happened, so it is not
safe to access. In this case, some sort of fall back plan is
needed and this usually involves aborting and restarting the
operation. The IBR and WHE benchmark suites applied HP,
HE, WHE, and IBR to the original Natarajan and Mittal tree
without additional restarting, which leads to unsafe memory
accesses.
We conclude this section by reiterating our premise that

manual SMR techniques are easier to misuse than automatic
ones, so most users should prefer to rely on automatic mem-
ory reclamation.

9 Discussion and Conclusion

In this work, we designed, analyzed, and evaluated a new
technique for automaticmemory reclamation for non-garbage-
collected languages based on a novel combination of SMR
techniques and reference counting. We showed that our tech-
nique is theoretically more efficient than existing methods,
and demonstrated that it is also practical by implementing
it as a library for C++ and comparing it to a range of ex-
isting schemes, both automatic and manual. Our method
performs strongly against existing automatic techniques,
improving performance by up to a factor of 16 when com-
pared against state-of-the-art open source and commercial
reference-counted pointers. Against manual SMR techniques,
it remains competitive, achieving similar throughput and
memory consumption to hazard pointers, and usually per-
forming within a factor of 1.2-2.5× against the fastest manual
techniques that consume unbounded amounts of memory.
A limitation of our automatic memory reclamation tech-

nique that we inherit from reference counting is that an
object cannot be collected while it is part of a reference cycle.
There are many approaches to deal with cycles (e.g. weak
pointers) and it would be interesting to explore incorporating
those into our technique.

Lastly, although we have applied the acquire-retire frame-
work specifically to reference counting, we believe that the
framework on its own is also important. By considering
resources in general, and supporting multiple retires on
the same resource, our interface generalizes previous ones,
which focused mostly on memory-reclamation. We believe it
will find a range of applications beyond reference counting
and possibly even beyond memory reclamation.

Acknowledgments

We thank the anonymous referees for their comments and
suggestions. Thanks to Andreia Correia, Pedro Ramalhete,
and Pascal Felber for pointing out that copying snapshot
pointers is non-trivial. This research was supported by NSF
grants CCF-1901381, CCF-1910030, and CCF-1919223, and
an NSERC PGSD Scholarship.

539

Concurrent Deferred Reference Counting with Constant-Time Overhead PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev,

and Nir Shavit. 2014. Stacktrack: An automated transactional approach

to concurrent memory reclamation. In European Conference on Com-

puter Systems (EUROSYS). https://doi.org/10.1145/2592798.2592808

[2] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.

2017. Forkscan: Conservative memory reclamation for modern operat-

ing systems. In European Conference on Computer Systems (EUROSYS).

https://doi.org/10.1145/3064176.3064214

[3] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.

2018. Threadscan: Automatic and scalable memory reclamation. ACM

Trans. Parallel Comput. 4, 4 (2018), 1ś18. https://doi.org/10.1145/

3201897

[4] David F Bacon, Clement R Attanasio, Han B Lee, VT Rajan, and

Stephen Smith. 2001. Java without the coffee breaks: A nonin-

trusive multiprocessor garbage collector. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI).

https://doi.org/10.1145/378795.378819

[5] Henry G Baker. 1994. Minimizing reference count updating with de-

ferred and anchored pointers for functional data structures. SIGPLAN

Not. 29, 9 (1994), 38ś43. https://doi.org/10.1145/185009.185016

[6] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.

2016. Fast and robust memory reclamation for concurrent data struc-

tures. In ACM Symposium on Parallelism in Algorithms and Architec-

tures (SPAA). https://doi.org/10.1145/2935764.2935790

[7] StephenMBlackburn and Kathryn SMcKinley. 2003. Ulterior reference

counting: Fast garbage collection without a long wait. In ACM SIG-

PLAN Conference on Object-oriented programming, systems, languages,

and applications (OOPSLA).

[8] Guy E. Blelloch and Yuanhao Wei. 2020. Concurrent Reference

Counting and Resource Management in Wait-free Constant Time.

arXiv:2002.07053 [cs.DC]

[9] Guy E Blelloch and Yuanhao Wei. 2020. LL/SC and Atomic Copy:

Constant Time, Space Efficient Implementations using only pointer-

width CAS. In 34rd International Symposium on Distributed Computing

(DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https:

//doi.org/10.4230/LIPIcs.DISC.2020.5

[10] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the

anchor: lightweight memory management for non-blocking data struc-

tures. In ACM Symposium on Parallelism in Algorithms and Architec-

tures (SPAA). https://doi.org/10.1145/2486159.2486184

[11] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free

Data Structures: There has to be a Better Way. In ACM Symposium on

Principles of Distributed Computing (PODC). https://doi.org/10.1145/

2767386.2767436

[12] Nachshon Cohen. 2018. Every data structure deserves lock-free

memory reclamation. ACM SIGPLAN Conference on Object-oriented

programming, systems, languages, and applications (OOPSLA) (2018).

https://doi.org/10.1145/3276513

[13] Nachshon Cohen and Erez Petrank. 2015. Efficient memory manage-

ment for lock-free data structures with optimistic access. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA).

https://doi.org/10.1145/2755573.2755579

[14] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. Or-

cGC: automatic lock-free memory reclamation. In ACM Symposium

on Principles and Practice of Parallel Programming (PPoPP). https:

//doi.org/10.1145/3437801.3441596

[15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-

chronized concurrency: The secret to scaling concurrent search data

structures. In ACM SIGARCH Computer Architecture News, Vol. 43.

ACM, 631ś644. https://doi.org/10.1145/2786763.2694359

[16] David Detlefs, Paul Alan Martin, Mark Moir, and Guy L. Steele Jr. 2002.

Lock-free reference counting. Distributed Computing 15, 4 (2002),

255ś271. https://doi.org/10.1007/s00446-002-0079-z

[17] L Peter Deutsch and Daniel G Bobrow. 1976. An efficient, incremental,

automatic garbage collector. Commun. ACM 19, 9 (1976), 522ś526.

https://doi.org/10.1145/360336.360345

[18] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast Non-Intrusive

Memory Reclamation for Highly-Concurrent Data Structures. SIG-

PLAN Not. 51, 11 (2016), 36ś45. https://doi.org/10.1145/2926697.

2926699

[19] Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir.

2011. On the power of hardware transactional memory to simplify

memory management. In ACM Symposium on Principles of Distributed

Computing (PODC). https://doi.org/10.1145/1993806.1993821

[20] J. Evans. 2019 (accessed November 5, 2019). Scalable mem-

ory allocation using jemalloc. https://www.facebook.com/

notes/facebook-engineering/scalable-memory-allocation-using-

jemalloc/480222803919.

[21] Facebook. 2020 (accessed June 5, 2020). Facebook Open Source Library.

https://github.com/facebook/folly.

[22] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University

of Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-579

[23] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch,

and Erez Petrank. 2020. NVTraverse: in NVRAM data structures, the

destination is more important than the journey. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI).

https://doi.org/10.1145/3385412.3386031

[24] Anders Gidenstam,Marina Papatriantafilou, Håkan Sundell, and Philip-

pas Tsigas. 2009. Efficient and Reliable Lock-FreeMemory Reclamation

Based on Reference Counting. IEEE Trans. Parallel Distrib. Syst. 20, 8

(2009). https://doi.org/10.1109/TPDS.2008.167

[25] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. 2008. The

read-copy-update mechanism for supporting real-time applications

on shared-memory multiprocessor systems with Linux. IBM Syst. J.

47, 2 (2008), 221ś236. https://doi.org/10.1147/sj.472.0221

[26] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking

Linked-Lists. In International Symposium on Distributed Computing

(DISC). https://doi.org/10.1007/3-540-45414-4_21

[27] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and

Jonathan Walpole. 2007. Performance of memory reclamation for

lockless synchronization. J. Parallel Distrib. Comput. 67, 12 (2007),

1270ś1285. https://doi.org/10.1016/j.jpdc.2007.04.010

[28] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.

Nonblocking Memory Management Support for Dynamic-sized Data

Structures. ACM Trans. Comput. Syst. 23, 2 (May 2005). https://doi.

org/10.1145/1062247.1062249

[29] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Re-

peat Offender Problem: A Mechanism for Supporting Dynamic-Sized,

Lock-Free Data Structures. In International Symposium on Distributed

Computing (DISC). https://doi.org/10.1007/3-540-36108-1_23

[30] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

[31] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A

correctness condition for concurrent objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972

[32] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage

Collection Handbook: The Art of Automatic Memory Management (1st

ed.). Chapman & Hall/CRC.

[33] Jeehoon Kang and Jaehwang Jung. 2020. A marriage of pointer-and

epoch-based reclamation. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI). https://doi.org/10.

1145/3385412.3385978

[34] Alex Kogan and Erez Petrank. 2012. A methodology for creating

fast wait-free data structures. SIGPLAN Not. 47, 8 (2012), 141ś150.

https://doi.org/10.1145/2370036.2145835

540

https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3201897
https://doi.org/10.1145/3201897
https://doi.org/10.1145/378795.378819
https://doi.org/10.1145/185009.185016
https://doi.org/10.1145/2935764.2935790
https://arxiv.org/abs/2002.07053
https://doi.org/10.4230/LIPIcs.DISC.2020.5
https://doi.org/10.4230/LIPIcs.DISC.2020.5
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/3276513
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1145/3437801.3441596
https://doi.org/10.1145/3437801.3441596
https://doi.org/10.1145/2786763.2694359
https://doi.org/10.1007/s00446-002-0079-z
https://doi.org/10.1145/360336.360345
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1145/1993806.1993821
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://github.com/facebook/folly
https://doi.org/10.48456/tr-579
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1109/TPDS.2008.167
https://doi.org/10.1147/sj.472.0221
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1007/3-540-36108-1_23
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/2370036.2145835

PLDI ’21, June 20ś25, 2021, Virtual, Canada Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei

[35] Hyonho Lee. 2010. Fast local-spin abortable mutual exclusion with

bounded space. In International Conference on Principles of Distributed

Systems (OPODIS). https://doi.org/10.1007/978-3-642-17653-1_27

[36] Yossi Levanoni and Erez Petrank. 2001. An on-the-fly reference count-

ing garbage collector for Java. In ACM SIGPLAN Conference on Object-

oriented programming, systems, languages, and applications (OOPSLA).

https://doi.org/10.1145/504282.504309

[37] The GNU C++ Library. 2019 (accessed November 5, 2019). The GNU

C++ Library. https://gcc.gnu.org/onlinedocs/libstdc++/.

[38] Alisdair Meredith. 2017. Revising atomic_shared_ptr for C++20. http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0718r2.html.

[39] Maged M Michael. 2002. High performance dynamic lock-free hash

tables and list-based sets. In ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA). https://doi.org/10.1145/564870.564881

[40] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation

for lock-free objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (2004),

491ś504. https://doi.org/10.1109/TPDS.2004.8

[41] M. M. Michael and M. L. Scott. 1995. Correction of a memory manage-

ment method for lock-free data structures. Technical Report. Computer

Science Department, University of Rochester.

[42] Maged M. Michael, Michael Wong, Paul McKenney, Geoffrey Romer,

Andrew Hunter, Arthur O’Dwyer, David S. Hollman, JF Bastien, Hans

Boehm, David Goldblatt, Frank Birbacher, and Mathias Stearn. 2019.

Hazard Pointers: Proposed Interface and Wording for Concurrency

TS 2. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/

p1121r1.pdf.

[43] Maged M. Michael, Michael Wong, Paul McKenney, Geoffrey Romer,

Andrew Hunter, Arthur O’Dwyer, David S. Hollman, JF Bastien, Hans

Boehm, David Goldblatt, Frank Birbacher, and Mathias Stearn. 2017.

Proposed Wording for Concurrent Data Structures: Hazard Pointer

and Read-Copy-Update (RCU). http://open-std.org/JTC1/SC22/WG21/

docs/papers/2017/p0566r3.pdf.

[44] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-free

binary search trees. In ACM Symposium on Principles and Practice

of Parallel Programming (PPoPP). https://doi.org/10.1145/2555243.

2555256

[45] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free

Memory Reclamation. In ACM Symposium on Principles and Practice

of Parallel Programming (PPoPP). https://doi.org/10.1145/3332466.

3374540

[46] Dan Plyukhin. 2015 (accessed November 5, 2019). Dis-

tributed Reference Counting for Asynchronous Shared Mem-

ory. http://rucs.ca/theory-of-computation/distributed-reference-

counting-for-asynchronous-shared-memory.

[47] Pedro Ramalhete and Andreia Correia. 2017. Brief announcement:

Hazard eras-non-blocking memory reclamation. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA). https://doi.org/

10.1145/3087556.3087588

[48] Håkan Sundell. 2005. Wait-Free Reference Counting and Memory

Management. In International Parallel and Distributed Processing Sym-

posium (IPDPS). https://doi.org/10.1109/IPDPS.2005.451

[49] John D. Valois. 1995. Lock-free Linked Lists Using Compare-and-swap.

In ACM Symposium on Principles of Distributed Computing (PODC).

https://doi.org/10.1145/224964.224988

[50] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and

Michael L Scott. 2018. Interval-based memory reclamation. SIGPLAN

Not. 53, 1 (2018), 1ś13. https://doi.org/10.1145/3200691.3178488

[51] Anthony Williams. 2012. C++ concurrency in action: practical multi-

threading. Manning Publ.

[52] Anthony Williams. 2019 (accessed November 5, 2019). just::thread

Concurrency Library. https://www.stdthread.co.uk.

541

https://doi.org/10.1007/978-3-642-17653-1_27
https://doi.org/10.1145/504282.504309
https://gcc.gnu.org/onlinedocs/libstdc++/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0718r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0718r2.html
https://doi.org/10.1145/564870.564881
https://doi.org/10.1109/TPDS.2004.8
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1121r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1121r1.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0566r3.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0566r3.pdf
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3332466.3374540
https://doi.org/10.1145/3332466.3374540
http://rucs.ca/theory-of-computation/distributed-reference-counting-for-asynchronous-shared-memory
http://rucs.ca/theory-of-computation/distributed-reference-counting-for-asynchronous-shared-memory
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1109/IPDPS.2005.451
https://doi.org/10.1145/224964.224988
https://doi.org/10.1145/3200691.3178488
https://www.stdthread.co.uk

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Our Approach
	3.1 Our Reference-Counting Library
	3.2 Usability Comparison to Manual SMR

	4 Defining the Acquire-Retire Interface
	5 Deferred Reference Counting
	5.1 Deferred Decrements
	5.2 Deferred Increments / Snapshots

	6 Acquire-Retire Algorithm
	7 Evaluation
	7.1 Comparison of Reference-Counting Techniques
	7.2 Comparison to Manual SMR Techniques

	8 Usability Difficulties of Manual SMR
	9 Discussion and Conclusion
	References

