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Abstract

We propose a simple and general online method to measure
the search progress within the Branch-and-Bound algorithm,
from which we estimate the size of the remaining search tree.
We then show how this information can help solvers algorith-
mically at runtime by designing a restart strategy for Mixed-
Integer Programming (MIP) solvers that decides whether to
restart the search based on the current estimate of the num-
ber of remaining nodes in the tree. We refer to this type of
algorithm as clairvoyant. Our clairvoyant restart strategy out-
performs a state-of-the-art solver on a large set of publicly
available MIP benchmark instances. It is implemented in the
MIP solver SCIP and will be available in future releases.

Introduction
A standard technique in backtracking search consists in
restarting the search at the root node, retaining as much
information about the previous tree as efficiently possible.
This is common practice in Constraint Programming (CP)
and Satisfiability (SAT) solvers, for instance. In contrast,
restarts are rarely used in modern Mixed-Integer Program-
ming (MIP) solvers. Instead, the entire search is usually per-
formed within a single Branch-and-Bound (B&B) tree with-
out restarting. In the MIP solver SCIP, for instance, restarts
may only be performed at the root node.

As far as we are aware of, restarts in MIP have only been
studied by (Achterberg 2007b), using as a criterion the num-
ber of globally fixed variables. This criterion therefore en-
sures that presolvers would fix some variables after a restart,
which would have a positive cascading effect on the rest of
the search. Hence, restarts were then classified as a type of
presolving technique. However, using this criterion, restarts
appeared to be detrimental to performance. The author con-
cluded that “in order to make good use of delayed restarts,
one has to invent different criteria for their application”.

However, besides presolving, restarts may also be benefi-
cial to branching strategies. Indeed, the branching decisions
taken at the start of the B&B search have a significant impact
on the efficiency of the entire search. Unfortunately, without
restarts, these decisions are quite uninformed, as little search
has been performed yet. Better decisions at the top of the tree
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can generally be made after a restart, as more information is
available then.

Thus we started this study with a simple experiment: in
SCIP, we forced a restart after 1000 nodes. On the MMMc
benchmark, defined below, this strategy yielded an average
4.7% slow down. However, by only selecting instances for
which default SCIP requires at least 50k (resp. 100k, 200k,
500k) nodes, then this forced restart produces a speed-up of
7% (resp. 9, 17, 18%) on the 106 (resp. 88, 72, 48) remaining
instances. Indeed, for instances that require relatively small
trees, poor decisions at the top of the tree have a smaller im-
pact, and thus restarts are generally not beneficial, but this
trade-off becomes interesting for large instances. Hence it
appears that if the final tree size of the current B&B tree
could be known during the search, it would be a good cri-
terion for restarts. In this paper we will show how estimates
of the tree size can be obtained and used as a criterion for
deciding restarts, improving the overall performance of the
MIP solver SCIP.

Related Work and Discussion
Knuth was the first to attempt to measure the time taken by
backtracking searches (Knuth 1975). Knuth’s model assigns
probabilities to each potential branch of the backtracking
procedure that estimate the relative sizes of the child sub-
trees in each branch. The method then computes an estimate
of the total tree size by sampling root-to-leaf paths subject
to these probabilities. Knuth showed that even when naively
using uniform probabilities, this sampling procedure pro-
duced reasonable results, but the high variance of the method
makes it unreliable, especially when the tree is unbalanced
(Kilby et al. 2006). Many improvements have been pro-
posed, notably in (Purdom 1978), (Chen 1992) and (Lelis,
Otten, and Dechter 2013).

Kullman extended Knuth’s ideas by augmenting the esti-
mation with additional information about the progress of the
search (Kullmann 2009). Provided that one has a measure of
how much progress is made by a particular decision, a quan-
tity called the τ -value can be derived that can be used to es-
timate the relative sizes of the child subtrees of a particular
search node. Kullman studied this problem in the context of
SAT, where for example, the number of satisfied clauses can
be used as a sufficient progress measure. Kullman showed
that this method could be used to derive probabilities that



reduce the variance exhibited by Knuth’s sampling method.
A similar model was studied for MIP, where a suitable

progress measure on the search tree is the dual gap change
as branching decisions are made (Le Bodic and Nemhauser
2017). They derived a quantity that describes the asymptotic
tree sizes, referred to as the ratio ϕ, which is similar to Kull-
man’s τ -value. In (Belov et al. 2017), this model is applied to
tree-size estimation for MIP, where it is shown that the use
of the ϕ value for deriving subtree weights roughly halves
the error in the estimate in the sampled tree size compared
to using Knuth’s uniform probabilities.

The methods we have reviewed so far tackle the prob-
lem of offline sampling. While these methods can to some
degree be extended to the online case (see e.g. (Belov et
al. 2017)), some information is lost in the process. For in-
stance, one way to adapt offline sampling to online tree-size
prediction is to treat the leaves obtained by the tree search
procedure as if they had been obtained randomly. However,
while in offline sampling, samples are drawn independently,
this does not hold when obtaining leaves online. This phe-
nomenon clearly materializes in the difference between of-
fline and online results of (Belov et al. 2017). Indeed, at any
given point in the search, supposing that samples are inde-
pendent equates to supposing that the first or latest samples
observed are equally good predictors of the next samples to
be observed. In other words, any such method would ignore
possible trends in the series of samples. However, we ar-
gue that there are multiple types of trends affecting the sam-
ples obtained in the B&B. First, since the depth of the tree
grows as the search progresses, increasingly deeper leaves
are found, although this is not a monotonic process. Sec-
ond, and conversely, after a primal solution is found which
improves the primal bound, nodes can be pruned at shal-
lower depths than previously. A similar phenomenon oc-
curs with strong conflicts (Achterberg 2007a). Other factors
such as “smart” node selection strategies (Berthold, Hendel,
and Koch 2017) contribute to creating varying trends in the
amount of resources required to reach a leaf. Hence, in an
online setting, while we cannot suppose that samples are in-
dependent, capturing trends may mitigate this loss.

Two online methods for tree-size estimation are given in
(Kilby et al. 2006), but as we will see, they do not de-
tect or exploit trends. Given the multiset D of the depths
of the leaves of a binary tree traversed at a given point in
the search, the Weighted Backtrack Estimator (WBE) returns

2|D|∑
d∈D 2−d − 1. The denominator equals 1 if D is the mul-

tiset of depths of the entire set of leaves of the tree, hence
the WBE is unbiased. The authors consider the case where
all leaves have depth d� 1, except the left child of the root
node, which is a leaf. Suppose the leaf with depth 1 is visited
first. After two samples, one with depth 1, the other d, WBE
computes a tree-size estimate of 4

2−1+2−d − 1 ≈ 7, which
can be arbitrarily far from the d+ 1 nodes already traversed
to reach the sample of depth d. Until the number of samples
approaches 2d−1, the sample of depth 1 will render WBE
essentially useless: for a large enough depth d, the estimate
is approximately 4|D| − 1. As pointed out in (Le Bodic and
Nemhauser 2017), the 0.5 weight of the left child encodes

an initial implicit assumption that both sides of the tree have
the same size. After finding a sample at depth d on the right
side of the tree, it should become clear that the assumption
was incorrect. However, this is not taken into account by the
WBE other than by the slow incorporation of other samples
with virtually insignificant individual weight. While this ex-
ample is clearly pathological, unbalanced trees are the stan-
dard in MIP, CP, and many other fields. This pathological
instance will be a recurring feature throughout the paper.

The authors also introduce the recursive estimator (RE),
which at any inner node does the following: if both its chil-
dren have unkown size, the node has unkown size. If the
size of a single child is unknown, estimate it to be the same
as the other child’s. If both children have a known or esti-
mated size, add them. Leaves have known size 1. As soon
as one leaf is found, an estimate propagates upwards recur-
sively to the root of all subtrees it belongs to, and thus to
the root node. The RE recovers from the pathological exam-
ple given for the WBE after 1 sample of depth d. Indeed, it
abandons the hypothesis that a 0.5 portion of the subtree lies
on each side of an inner node as soon as at least one sample
is available on each side. It is clear why RE performs bet-
ter than WBE on very unbalanced trees, as shown in (Kilby
et al. 2006). However, if at a node of a reasonably balanced
tree, the left child is fully explored, and the right child has a
single sample, both sizes are simply added, giving the same
“weight” to the right sample as to all left samples taken to-
gether, which creates higher variability.

Both WBE and RE suffer from an additional limitation
in the case of optimization problems. When an improving
solution is found, new samples will reflect it, but no mech-
anism revisits the estimates provided by previous samples,
despite the fact that in practice, many nodes are pruned by
bound, hence they would have been pruned at shallower
depth, yielding smaller estimates. This can be fixed if the en-
tire tree is kept in memory and reprocessed to compute new
estimates upon improvement of the primal bound. However,
this is more memory than the solving process itself keeps,
which only requires the open parts of the tree. In our tests,
this created a significant time and memory overhead in the
search itself.

Online methods specific to the B&B include a statisti-
cal model of the shape of the B&B tree (Cornuéjols, Kara-
manov, and Li 2006), and (Özaltın, Hunsaker, and Schaefer
2011), which defines a progress measure, the sum of subtree
gaps, and uses double exponential smoothing, a time series
forecasting technique, to obtain a tree-size estimate.

Note that tree-size estimates have been extensively stud-
ied forA∗, see e.g. (Thayer, Stern, and Lelis 2012) and refer-
ences therein. In particular, this reference reviews concepts
of progress measures and velocity-based estimates for A∗.

Contributions
Our first contribution is a formal definition of an online
progress measure, which does not require a significant time
or memory overhead, and is invariant to changes in pri-
mal bound. Second, we formally define a new acceleration-
based tree-size estimation method, which we show general-
izes and extends multiple existing tree-size estimation meth-



ods (WBE, velocity-based methods). The combination of
progress measure and tree-size estimates is loosely coupled,
allowing new variants to be readily defined.

Our main contribution is the integration of tree-size esti-
mates into a clairvoyant restart strategy. Note that this is dif-
ferent from algorithm selection (Lobjois and Lemaı̂tre 1998;
Kilby et al. 2006), wherein online estimates are used to se-
lect an algorithm before the actual search, and always incurs
a fixed overhead. The clairvoyant restart strategy is truly on-
line: it observes the default search and may decide to restart.
If it does not, there is no measurable memory or time over-
head. If it does, our benchmarks shows that it improves the
run time by 8 %, on average. Over all instances, the average
time improvement is 4 %, and 10 % over “hard” instances,
which is significant for MIP. These results, together with the
simplicity of the method, demonstrates the general potential
of clairvoyant algorithms.

Tree Search Progress Measures
A Simple and General Progress Measure
Throughout the paper we will suppose that the input is an
online sequence of m ≥ 2 rooted trees Tk, which represent
the m states of the final B&B tree T = (V,A) from the
beginning of the search (T1) to its end (Tm = T ). We will
refer to T1, . . . , Tm−1 as intermediate trees, and to Tm as
the complete tree. All trees are rooted at the same root r,
and for all k ∈ {1, . . . ,m}, Tk is a subgraph of Tk+1. For
k ∈ {1, . . . ,m}, we denote as:
• Vk ⊆ V the set of nodes of Tk, i.e. the nodes of T which

have been explored at step k,
• Ik ⊂ Vk the set of inner nodes of Tk (which includes the

root r if r is not a leaf),
• Lk ⊆ Vk the set of leaves of Tk,
• Fk ⊆ Lk the set of final leaves of Tk, i.e. base cases of

the search.
Between two successive trees Tk and Tk+1 at some k ∈

{1, . . . ,m − 1}, we suppose that the following operations
(or combination thereof) are possible:
• Solve a non-final leaf: i ∈ Lk \ Fk and i ∈ Fk+1, i.e. a

non-final leaf is proven to be final.
• Expand/branch on a non-final leaf: i ∈ Lk \ Fk and i ∈
Ik+1, i.e. a non-final leaf becomes an inner node.

Proposition 1. For all k ∈ {1, . . . ,m− 1} (corresponding
to the indices of intermediate trees),

1. Ik ⊆ Ik+1, i.e. the set of inner nodes is non-decreasing,
2. Fk ⊆ Fk+1, i.e. the set of final leaves is non-decreasing,
3. Fk ( Lk, i.e. there exists a non-final leaf in any interme-

diate tree,
4. Fk ⊂ Fm = Lm, i.e. all leaves are final only at Tm.

For simplicity, we will use the sets V, I, L, F without sub-
script to refer to nodes of the complete tree Tm, which in-
cludes all nodes from Tk, k ∈ {1, . . . ,m− 1}.

In order to compute a progress measure for a tree Tk, the
methods we study require a measure of the hardness hi to
solve a node i ∈ V , which we define as follows:
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Figure 1: Two search trees depicting the hardness values
of its nodes with different hardness schemes. Numbers are
rounded to two decimal places.

• The hardness value at the root node r is h(r) = 1,
• The hardness value h(i) of an inner node i ∈ I is equal to

the sum of the hardness values of its children:

h(i) =
∑
ij∈A

h(j),

where h(j) > 0 for all ij ∈ A.
The recursive definition of hardness can be seen as a sim-

ple partition, allocation, or repartition of the hardness of a
subproblem into the subproblems it is divided into. In the
example given in Figure 1a, the hardness value at a given
node is uniformly divided among its children, but this is not
necessary. In fact, a hardness scheme can be defined simi-
larly to a probability scheme, as in (Belov et al. 2017), by
assigning for every ij ∈ A, h(j) = p(ij) · h(i), where p can
be uniform (then denoted as pu), or approximate the tree
balance (pk), as shown in Figure 1b.

Note in the case where the hardness scheme is uniform,
the notion of hardness of a leaf corresponds exactly to its
weight in Knuth’s offline tree sampling.

Given a set of nodes X ⊆ V , we define its hardness as

h(X) =
∑
i∈X

h(i).

There are three direct results which make this notion of hard-
ness useful for the purpose of measuring the search progress.
Proposition 2. For any two trees Tk and Tl, with k, l ∈
{1, . . . ,m}, k 6= l, we have h(Lk) = h(Ll).

Proof. From the definition of the hardness of nodes, h(L)
remains constant when adding children under a leaf of T ,
thus the property holds by induction.

In other words, the hardness at the leaves remains constant
throughout the search.
Corollary 1. For any k ∈ {1, . . .m}, h(Lk) = 1.

Proof. By definition, h(r) = 1, and L1 = {r}, hence the
property is true for T1, and thus holds for all k’s via Propo-
sition 2.



We simply define the progress measure of a search tree
Tk as h(Fk), the sum of the hardness at the final leaves.
With uniform allocation of hardness to children, h(Fk) cor-
responds to the denominator of the WBE of (Kilby et al.
2006).
Proposition 3. The following (in)equalities hold:

0 = h(F1) ≤ · · · ≤ h(Fm−1) < h(Fm) = 1

Proof. Since we suppose m ≥ 2, the root r is not a final
leaf in T1, hence F1 = ∅. Further, for any k ∈ {1, . . . ,m −
1}, Fk ⊆ Fk+1, hence h(Fk) ≤ h(Fk+1). Finally, for any
k ∈ {1, . . . ,m − 1}, Fk ⊂ Lk, and ∀i ∈ V, h(i) > 0,
hence h(Fk) < h(Lk) = 1, and Fm = Lm, thus h(Fm) =
h(Lm) = 1.

The hardness of the set of final leaves hence provides a
non-decreasing measure of the progress of a Backtracking
search. Ideally, a progress measure would be linear from 0
to 1, in which case a linear extrapolation provides a perfect
estimate of m at any given k ≥ 2.

Computational Assessment of Progress Measures
We now perform computational experiments on progress
measures for B&B on Mixed-Integer Programming (MIP)
instances. Throughout the paper we use the MIP solver SCIP
6.0 (Gleixner et al. 2018) and the so-called MMMc MIP
benchmark, a collection of 496 instances from MIPLIB 2010
“benchmark” (Koch et al. 2011), MIPLIB 2003 (Achter-
berg, Koch, and Martin 2006), MIPLIB 3.0 (Bixby et al.
1998), and COR@L (Coral 2010). We solved each instance
in MMMc with default SCIP and output the B&B tree in the
vbc format, as in (Belov et al. 2017). We then discard the
trees corresponding to instances that were not solved within
the time limit, and converted the vbc files to a more compact
format, leaving 349 instances. We then simulate the traversal
of the B& B tree, and compare the value of the progress mea-
sure to the true fraction of nodes that have been explored.

We can see in Figure 2 that both progress measures can be
observed to be reasonably accurate, and produce very simi-
lar results. Actual represents the true progress of the search
in terms of the number of nodes visited thus far, while pk
and pu correspond to the hardness schemes previously men-
tioned.

We now provide some quantitative assessments. We mea-
sure the average error exhibited by the approximations as the
average difference between the actual progress and the pre-
dicted progress. The results are shown in Table 1. For both
the uniform and domain-based probabilities, the average er-
rors tend to be about 15%. On large instances, which are
the primary instances of interest to us, the errors are slightly
larger, reaching around 20%, which is still very good.

Although the estimation based on pk is more accurate than
pu, it has several implementation shortcomings that need to
be considered. Note that for our simulation, we use the exact
LP objective value of a node, which can only be known af-
ter the node LP relaxation has been solved. For pk, solving a
node LP relaxation also affects the subtree of that node’s sib-
ling, potentially including previously solved leaves within
that subtree. Revisiting already solved subtrees is not only
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Figure 2: Progress measures for two MIP instances.

time consuming, but it has the additional disadvantage that
the current progress may decrease. Therefore, the hardness
of a node must be determined at creation time, where only
approximations of the expected lower bounds are available,
either as a result of strong branching, or based on the pseudo
cost information of the branching variable. For performance
considerations, strong branching is only applied at the be-
ginning of the search (and hence at the topmost nodes of the
tree). Thus, the majority of the hardness measure must be
based on potentially very inaccurate pseudo-cost informa-
tion. Given these drawbacks, and the fact that the pk scheme
yields only marginally better simulations under ideal condi-
tions, we decided to proceed with uniform probabilities pu
for the remainder of our experiments.

From Search Progress to Tree-Size Estimate
A Linear Extrapolation Technique
We suppose that we possess a measure rk of the resources
required from the beginning of the solve until Tk is reached.
In our experiments, we have chosen rk to be the number



All instances Large (≥ 1000 nodes)

Average Median Average Median

pu 0.17 0.14 0.24 0.24

pk 0.16 0.12 0.20 0.17

Table 1: The average and median of the average errors ex-
hibited by the progress measures using domain-based prob-
abilities (pk) and uniform probabilities (pu).

of nodes explored up to and including step k, but it can
be defined to be time, for instance, or any other relevant
measure. Throughout the rest of the paper we will use the
shorthand hk for the progress measure h(Fk) for any tree
Tk, k ∈ {1, . . . ,m}.

Perhaps the most natural estimate of the remaining
amount of resources required to reach Tm while at Tk would
be to suppose that each % of progress requires a fixed
amount of resources. This leads to the formula

r̂(k) = r1 +
rk − r1
hk

, (1)

where r̂(k) is the estimation at step k of the total amount of
resources rm required to obtain the complete tree Tm. Equa-
tion (1) provides an exact estimate if the assumption that the
amount of resources required for each unit of progress is
fixed.

Unfortunately, in practice, a linear progress measure can-
not be obtained. Indeed, for a feasibility problem, the search
can stop at any point if a feasible solution is found. A sim-
ilar phenomenon is at play for an optimization problem if
a solution is found whose objective value matches the dual
bound.

The estimate given by (1) is equivalent (up to a constant)
to the WBE if r1 = 1, rk = 2|Fk| + 1 and a uniform hard-
ness scheme. If we choose instead rk = |Vk|, the patholog-
ical example for WBE returns an estimate of size 4 + 2d
instead of 7 after the same two samples. This demonstrates
that a given progress measure can lead to tree-size estimates
of varying quality, and that it may be beneficial to decouple
these concepts in order to study them.

A Velocity-Based Technique
We now study how to handle a non-linear progress mea-
sure, i.e. the fact that one unit of progress may require non-
constant resources throughout the search. We find that it
helps to express the problem of estimating the amount of
resources required to complete the search using a simple
physics analogy, considering an object moving from point
a to b, at distance 1 from each other. The object departs a
at time step k = 1 and reaches b at k = m. Suppose that
the velocity of the object is constant, then at time k the aver-
age velocity and the instantaneous velocity of the object are
equal at any point between a and b. Using our notation, at
step k, this translates to

hk − h1
rk − r1

=
hk − hk−1
rk − rk−1

.

Estimating the time of arrival of the object using either of
these velocities is therefore equivalent. Equation (1) is sim-
ply the formula of total distance (hm = 1) over average
velocity, plus initial displacement.

If the velocity is not constant, then it is not clear whether
the average velocity, the instantaneous velocity, or perhaps
another measure would yield the most accurate estimate. In-
spired by time-series forecasting, we therefore propose to
compute a simple moving average technique, which can be
parametrized to compute the velocity on an arbitrary num-
ber of most recent observations. At step k, given a window
size 0 < s < k, it computes the average velocity over the
last s+ 1 observations:

vk0,k =
hk − hk0

rk − rk0

,

where k0 = k−s is the start of the window. The total amount
of resources can then be estimated by the displacement for-
mula

r̂(k) = rk +
hm − hk
vk0,k

. (2)

In our recurrent pathological example, with rk = 2|F |+1,
the estimate (2) returns the exact tree size 2d+1 at any point
of the search as long as the window excludes the left child.
This is because the velocity of the search is constant when
traversing the leaves at depth d.

An Acceleration-Based Technique
Taking the physics analogy further, we propose to capture
the acceleration (positive or negative) of the progress mea-
sure, in order to estimate the change in velocity in future
observations. In principle, this would allow us to capture
the fact that as the leaves are found at gradually increasing
depths, the velocity of the search decreases.

Let k0, k1, k2 be the start, middle and end of the window
of size s, respectively. The acceleration in the window can
then be computed as

ak = 2
vk0,k2

− vk0,k1

rk2 − rk1

.

The velocity v over the entire window is corrected by the
acceleration ak using the formula

v = vk0,k1 − 0.5ak(rk0 + rk1).

Supposing that the acceleration remains at its value ak after
step k, the estimation of the total amount of resources r̂(k)
can be obtained by solving the displacement formula under
constant acceleration

1 = hm = hk + v · (r̂(k)− rk) + ak(r̂(k)− rk)2/2,
which is a simple quadratic equation for which every data
but r̂(k) is known at step k. Its solution is

r̂(k) = rk +max

(
−v ±

√
v2 + 2ak(1− hk)

ak

)
,

where max returns the only positive root of this quadratic
equation.



All instances Large (≥ 1000 nodes)

No Window

No acceleration 16% 43%

Acceleration 21% 49%

Window

No acceleration 14% 187%

Acceleration 13% 48%

Table 2: The median of the average percentage errors exhib-
ited by the tree-size estimates with and without the acceler-
ation technique.

Computational Assessment of Tree-Size Estimates
Simulations on Pre-Generated Trees We provide quanti-
tative assessments similar to those for the progress measure
in order to assess whether the estimates predicted by the ve-
locity technique are useful. We compare the use of a window
size 100, and no window at all, and measure the average er-
ror between the predicted tree size and actual tree size as a
percentage of the actual tree size. We do not measure the
error for the first 100 leaves, since the variance of the esti-
mate makes it unreliable before sufficiently many samples
are taken. We also perform a sliding window minimum over
the predictions in order to mitigate the fact that occasionally,
a massive over prediction will be computed by a single sam-
ple, only to be corrected a few samples later. This emulates
the fact that in our later MIP experiments, we will not per-
form a restart unless high estimates are produced for many
samples in a row. We use a sliding window minimum with a
window size of 50.

For the velocity-based technique and the acceleration-
based technique, we show the median percentage error of
the tree-size estimates in Table 2. We do not report average
percentage errors since a few outlying instances skew the re-
sults and make the quantity useless. Table 2 shows that the
errors tend to be at most 50% for large tree instances, which
means that we are correctly predicting the order of magni-
tude of the tree sizes, which should be accurate enough to
inform a restart strategy. The presented results confirm that
the acceleration method is clearly beneficial within a moving
window. The exceptionally poor performance of the window
method without acceleration requires further investigation.

A Clairvoyant Restart Strategy
Current restart strategies in MIP solvers
To the best of our knowledge, MIP solvers such as CPLEX,
Gurobi and SCIP currently only restart the solution process
at the root node. (From its logging message “Resetting tree
to root”, it appears that the solver FICO Xpress may apply
restarts during the search, but this is all we know.) At the
root node, information obtained from the initial solution to
the LP relaxation, valid cutting planes, or improving solu-
tions may lead to many variable domain reductions that were
not detected at presolving time. If the percentage of fixed

integer variables exceeds a threshold (by default, 2.5 % in
SCIP), this justifies a restart of the solution process. During
a restart, SCIP preserves variable domain reductions, solu-
tions, valid cuts and branching history information (Achter-
berg and Berthold 2009). By default, SCIP may perform ar-
bitrarily many root node restarts.

As we have reported before, (Achterberg 2007b) con-
ducted MIP experiments where restarts were allowed dur-
ing the B&B tree search, where restarts would be decided
based on the number of variables which have been fixed
globally. The results, however, were inferior compared to
the SCIP default strategy. As (Achterberg 2007b) points out,
additional global variable fixings seem to occur mostly at
the final stage of the solution process, when the computa-
tional overhead of rebuilding a new search tree from scratch
becomes too high. Our clairvoyant restart strategy addresses
this disadvantage by using tree-size estimation instead of the
number of global variable fixings.

A Clairvoyant Restart Strategy
For the remainder of this work, we use rk = |Vk| as the re-
source measure. We implement our clairvoyant restart strat-
egy as follows: given a parameter γ > 1, a restart is decided
at step k if

γ · rk < r̂(k). (3)

In our experiments, γ is set to 100, and we update the esti-
mate r̂(k) at every leaf node, i.e. at every step k such that
|Fk| = |Fk−1|+1.

We have two safeguards against the potentially high vari-
ance of r̂(k). First, a restart is only triggered after condition
(3) is satisfied for 50 consecutive k’s. Second, no restart is
performed until |Fk| ≥ 1000. Together with γ = 100, this
means that we may only restart trees with r̂(k) ≥ 105 nodes.
Further, after 1000 nodes, SCIP can use the branching his-
tory and other relevant data of a larger amount of solving
nodes to build a better tree after the restart.

MIP Solver Experiments
We test our restart strategy with four different tree-size
estimates: WBE; linear, a linear forecast of the search
progress using double exponential smoothing with param-
eters α = β = 0.15; window-acc and window-vel,
a moving window with or without acceleration. Both use
a window size of 100. Restarts at the root node are dis-
abled. In order to limit the number of necessary experi-
ments, we continue the solution process after the first clair-
voyant restart without further interruptions. We compare to
three other SCIP settings: default (default), no restarts
(0-restart), and at most one restart at the end of the root
node (1-restart) based on SCIP’s default strategy.

We use SCIP 6.0 with SoPlex 4.0 as LP solver on the test
set MMMc. All experiments have been conducted on a clus-
ter with 48 nodes equipped with Intel Xeon Gold 5122 at
3.60GHz and 96GB RAM. Jobs were run exclusively on a
node. The time limit was 2h.

Table 3 shows the solving time T in seconds and the num-
ber of solving nodes N . If a restart was performed, N is



the sum of explored nodes in both search trees. The indi-
vidual numbers are aggregated by a shifted geometric mean
(Achterberg 2007b), with a shift of 1 for time and 100 for
nodes. Two further columns Trel and Nrel give the relative
performance compared to default. Surprisingly, on the
selected benchmark, 0-restart is actually consistently
better than default in terms of the solving time and solv-
ing nodes. The most likely explanation is that the default
restart parameters were more efficient in a previous version
of SCIP, but have not been completely re-calibrated in 6.0.

Group Settings #Restarts T Trel N Nrel

ALL (490)

default 149 183.1 1.00 3 207 1.00
0-restart 0 179.5 0.98 3 133 0.98
1-restart 95 183.3 1.00 3 218 1.00
WBE 27 179.9 0.98 3 139 0.98
linear 168 183.6 1.00 3 185 0.99
window-acc 103 175.6 0.96 3 016 0.94
window-vel 147 178.2 0.97 3 101 0.97

AFF. (235)

default 149 414.0 1.00 26 767 1.00
0-restart 0 397.3 0.96 25 533 0.95
1-restart 95 414.1 1.00 26 956 1.01
WBE 27 399.2 0.96 25 626 0.96
linear 168 416.8 1.01 26 403 0.99
window-acc 103 379.5 0.92 23 656 0.88
window-vel 147 391.8 0.95 25 007 0.93

LT1000 (297)

default 123 21.2 1.00 520 1.00
0-restart 0 20.6 0.97 509 0.98
1-restart 75 21.1 1.00 525 1.01
WBE 3 20.6 0.97 511 0.98
linear 47 20.8 0.98 508 0.98
window-acc 12 20.2 0.95 494 0.95
window-vel 31 20.3 0.96 497 0.96

GE1000 (64)

default 18 2 088.7 1.00 33 209 1.00
0-restart 0 2 046.7 0.98 31 384 0.95
1-restart 14 2 127.2 1.02 33 760 1.02
WBE 4 2 051.6 0.98 31 794 0.96
linear 46 2 319.9 1.11 37 017 1.11
window-acc 24 1 869.9 0.90 28 542 0.86
window-vel 42 2 040.4 0.98 33 339 1.00

Table 3: Results for the proposed restart strategies within
SCIP. Relative improvements of more than 5 % are indicated
in bold font.

The table shows the results for 4 interesting groups of in-
stances. The first group “ALL (490)” is the entire bench-
mark of 496 instances, reduced by 4 instances for which
one of the versions reported a wrong result (an infeasible
solution or a wrong bound). In addition, 2 instances were re-
moved because of outstanding performance variability (Lodi
and Tramontani 2013) unrelated to restarts.

The window methods achieve the best results in this ex-
periment. The window-acc method yields a relative im-
provement of 4.1 % (time) and 5.9 % (nodes), followed by
window-vel with 2.6 % (time) and 4.3 % (nodes), and
0-restart with ≈ 2 % (time and nodes). Allowing only
one restart does not show relevant differences compared to
default, although default performs more than 50 ad-
ditional restarts. From the column #Restarts, it is clear that
not all instances are affected by restarts. The second group,
“AFF. (235)”, is therefore restricted to those 235 instances
for which at least one of the settings performs a restart. As
all proposed methods require at most a constant overhead
per node, we do not show the group of unaffected instances.

The last two groups split the set of instances solved by

at least one setting into an easier group for which all tested
variants required at most 1000 seconds (“LT1000 (297)”),
and a hard group for which at least one setting needed
more than 1000 seconds. For the group “LT1000 (297)”,
default is the slowest among the tested settings. It is in-
teresting to see that both default and 1-restart trig-
ger a large fraction of their total restarts on this easier group,
which would be solved faster with fewer restarts, as shown
by 0-restart. The window-acc method only rarely
performs a restart on this group, despite its size compris-
ing 60 % of the total instance set. On the smaller (≈ 13 %)
set of 64 harder, but solvable instances, window-acc per-
forms more restarts than 1-restart and even default,
and reduces the solving time and nodes required by 10.5 %
and 14 %, respectively.

Overall, the clairvoyant method window-acc achieves
a considerable speedup compared to all available restart
strategies that SCIP currently provides. The speedup is par-
ticularly high on the last set of very hard instances, where
the use of acceleration shows a clear benefit compared to
window-vel. Interestingly, the highest number of restarts
is triggered by the clairvoyant restart using a linear fore-
cast, while the backtrack estimator is by far the most con-
servative clairvoyant restart in this experiment. It appears
that window-acc finds the best balance in that it neither
restarts too often, nor too conservatively.

Conclusion and Future Directions
Although we have obtained performance improvements that
are significant for MIP, it seems clear that we have only
just begun tapping into the potential of clairvoyant algo-
rithms. Undoubtedly, the reader themself is already envi-
sioning a host of potential improvements and adaptations
of this method, and we certainly recognize that all aspects,
from the progress measure to the restarts, could be improved
or extended. On the other hand, the simplicity of our method
only better demonstrates the potential of this approach.

One notable improvement to clairvoyant restarts could
consist in performing a sequence of restarts, which has
proven beneficial in particular in CP and SAT.

Besides restarts, many other algorithmic aspects of MIP
solvers could benefit from a tree-size estimate. For instance,
after a clairvoyant restart, more cutting planes could be gen-
erated at the root node if branching has proven less efficient
at reducing the gap than cuts have.

Finally, besides MIP, we anticipate that clairvoyant algo-
rithms may lead to improvements in many other fields.
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